Mark Scheme Summer 2009

GCE

GCE Mathematics (8371/ 8374; 9371/ 9374)

Edexcel is one of the leading examining and awarding bodies in the UK and

 throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2009
Publications Code UA021531
All the material in this publication is copyright
© Edexcel Ltd 2009

Contents

1. 6663 Core Mathematics 1 5
2. 6664 Core Mathematics 2 17
3. 6665 Core Mathematics 3 27
4. 6666 Core Mathematics 4 39
5. 6667 Further Pure Mathematics 1 (new) 47
6. 6668 Further Pure Mathematics 2 (new) 55
7. 6669 Further Pure Mathematics 3 (new) 65
8. 6674 Further Pure Mathematics 1 (legacy) 73
9. 6675 Further Pure Mathematics 2 (legacy) 81
10. 6676 Further Pure Mathematics 3 (legacy) 87
11. 6677 Mechanics 1 93
12. 6678 Mechanics 2 97
13. 6679 Mechanics 3 103
14. 6680 Mechanics 4 109
15. 6681 Mechanics 5 115
16. 6683 Statistics 1 121
17. 6684 Statistics 2 129
18. 6691 Statistics 3 137
19. 6686 Statistics 4 145
20. 6689 Decision Mathematics 1 151
21. 6690 Decision Mathematics 2 161

Question Number	Scheme	Marks
Q1 (a) (b)	$\begin{align*} & (3 \sqrt{ } 7)^{2}=63 \tag{1}\\ & (8+\sqrt{ } 5)(2-\sqrt{ } 5)=16-5+2 \sqrt{ } 5-8 \sqrt{ } 5 \\ & \quad=11,-6 \sqrt{ } 5 \end{align*}$	M1 A1, A1 (3) [4]
(a) (b)	B1 for 63 only M1 for an attempt to expand their brackets with ≥ 3 terms correct. They may collect the $\sqrt{5}$ terms to get $16-5-6 \sqrt{5}$ Allow $-\sqrt{5} \times \sqrt{5}$ or $-(\sqrt{5})^{2}$ or $-\sqrt{25}$ instead of the -5 These 4 values may appear in a list or table but they should have minus signs included The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule $1^{\text {st }}$ A1 for 11 from $16-5$ or ${ }^{-6 \sqrt{5}}$ from $-8 \sqrt{5}+2 \sqrt{5}$ $2^{\text {nd }}$ A1 for both 11 and $-6 \sqrt{5}$. S.C - Double sign error in expansion For $16-5-2 \sqrt{5}+8 \sqrt{5}$ leading to $11+\ldots$ allow one mark	

Question Number	Scheme	Marks $\%$
Q2	$\begin{aligned} & 32=2^{5} \quad \text { or } 2048=2^{11}, \quad \sqrt{2}=2^{1 / 2} \text { or } \quad \sqrt{2048}=(2048)^{\frac{1}{2}} \\ & a=\frac{11}{2} \quad\left(\text { or } 5 \frac{1}{2} \text { or } 5.5\right) \end{aligned}$	B1, B1 B1 [3]
	$1^{\text {st }}$ B1 for $32=2^{5}$ or $2048=2^{11}$ This should be explicitly seen: $32 \sqrt{2}=2^{a}$ followed by $2^{5} \sqrt{2}=2^{a}$ is OK Even writing $32 \times 2=2^{5} \times 2\left(=2^{6}\right)$ is OK but simply writing $32 \times 2=2^{6}$ is NOT $2^{\text {nd }} \mathrm{B} 1$ for $2^{\frac{1}{2}}$ or $(2048)^{\frac{1}{2}}$ seen. This mark may be implied $3^{\text {rd }} \mathrm{B} 1$ for answer as written. Need $a=\ldots$ so $2^{\frac{11}{2}}$ is B0 $a=\frac{11}{2}\left(\right.$ or $5 \frac{1}{2}$ or 5.5$)$ with no working scores full marks. If $a=5.5$ seen then award $3 / 3$ unless it is clear that the value follows from totally incorrect work. Part solutions: e.g. $2^{5} \sqrt{2}$ scores the first B1. Special case: If $\sqrt{2}=2^{1 / 2}$ is not explicitly seen, but the final answer includes $\frac{1}{2}$, e.g. $a=2 \frac{1}{2}, a=4 \frac{1}{2}$, the second B 1 is given by implication.	

Question Number	Scheme	Marks $\%$
Q3 (a) (b)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-6 x^{-3} \\ & \frac{2 x^{4}}{4}+\frac{3 x^{-1}}{-1}(+C) \\ & \frac{x^{4}}{2}-3 x^{-1}+C \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) [6]
(a) (b)	M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ $1^{\text {st }} \mathrm{A} 1$ for $6 x^{2}$ $2^{\text {nd }}$ A1 for $-6 x^{-3}$ or $-\frac{6}{x^{3}}$ Condone $+-6 x^{-3}$ here. Inclusion of $+c$ scores A0 here. M1 for some attempt to integrate an x term of the given $y . \quad x^{n} \rightarrow x^{n+1}$ $1^{\text {st }}$ A1 for both x terms correct but unsimplified- as printed or better. Ignore $+c$ here $2^{\text {nd }}$ A1 for both x terms correct and simplified and $+c$. Accept $-\frac{3}{x}$ but $\underline{\text { NOT }}$ $+-3 x^{-1}$ Condone the $+c$ appearing on the first (unsimplified) line but missing on the final (simplified) line Apply ISW if a correct answer is seen If part (b) is attempted first and this is clearly labelled then apply the scheme and allow the marks. Otherwise assume the first solution is for part (a).	

Question Number	Scheme	Marks
Q4 (a) (b) (c)	$5 x>10, x>2$ [Condone $x>\frac{10}{2}=2$ for M1A1] $(2 x+3)(x-4)=0, \quad$ 'Critical values' are $-\frac{3}{2}$ and 4 $\begin{aligned} &-\frac{3}{2}<x<4 \\ & 2<x<4 \end{aligned}$	M1, A1 (2) M1, A1 M1 A1ft (4) B1ft (1) [7]
(a) (b)	M1 for attempt to collect like terms on each side leading to $a x>b$, or $a x<b$, or $a x=b$ Must have a or b correct so eg $3 x>4$ scores M0 $1^{\text {st }}$ M1 for an attempt to factorize or solve to find critical values. Method must potentially give 2 critical values $1^{\text {st }}$ A1 for $-\frac{3}{2}$ and 4 seen. They may write $x<-\frac{3}{2}, x<4$ and still get this A1 $2^{\text {nd }}$ M1 for choosing the "inside region" for their critical values $2^{\text {nd }}$ A1ft follow through their 2 distinct critical values Allow $x>-\frac{3}{2}$ with "or" "," " \cup ", "" $x<4$ to score M1A0 but "and" or " \cap " score M1A1 $x \in\left(-\frac{3}{2}, 4\right)$ is M1A1 but $x \in\left[-\frac{3}{2}, 4\right]$ is M1A0. Score M0A0 for a number line or graph only	
(c)	B1ft Allow if a correct answer is seen or follow through their answer to (a) and their answer to (b) but their answers to (a) and (b) must be regions. Do not follow through single values. If their follow through answer is the empty set accept \varnothing or $\}$ or equivalent in words If (a) or (b) are not given then score this mark for cao NB You may see $x<4$ (with anything or nothing in-between) $x<-1.5$ in (b) and empty set in (c) for B1 ft Do not award marks for part (b) if only seen in part (c) Use of \leq instead of $<$ (or \geq instead of $>$) loses one accuracy mark only, at first occurrence.	

Question Number	Scheme	Marks
Q5 (a) (b) (c)		M1 M1 A1 (3) M1 A1 (2) M1 A1ft Alcao (3) [8]
(a) (b) (c) (c)	Note: If the sequence is considered 'backwards', an equivalent solution may be given using $d=60$ with $a=600$ and $l=2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b) $1^{\text {st }}$ M1 for an attempt to use 2400 and 600 in $a+(n-1) d$ formula. Must use both values i.e. need $a+p d=2400$ and $a+q d=600$ where $p=8$ or 9 and $q=38$ or 39 (any combination) $2^{\text {nd }} \mathrm{M} 1$ for an attempt to solve their 2 linear equations in a and d as far as $d=\ldots$ A1 for $d= \pm 60$. Condone correct equations leading to $d=60$ or $a+8 d=2400$ and $\quad a+38 d=600$ leading to $d=-60$. They should get penalised in (b) and (c). NB This is a "one off" ruling for A1. Usually an A mark must follow from their work. ALT $1^{\text {st }} \mathrm{M} 1$ for $(30 d)= \pm(2400-600)$ $2^{\text {nd }}$ M1 for $(d=) \pm \frac{\overline{(2400-600)}}{30}$ A1 for $d= \pm 60$ $a+9 d=600, a+39 d=2400$ only scores M0 BUT if they solve to find $d= \pm 60$ then use ALT scheme above. M1 for use of their d in a correct linear equation to find a leading to $a=\ldots$ A1 their a must be compatible with their d so $d=60$ must have $a=600$ and $d=-60$, $a=2940$ So for example they can have $2400=a+9(60)$ leading to $a=\ldots$ for M1 but it scores A0 Any approach using a list scores M1A1 for a correct a but M0A0 otherwise M1 for use of a correct S_{n} formula with $n=40$ and at least one of a, d or l correct or correct ft . $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for use of a correct S_{40} formula and both a, d or a, l correct or correct follow through ALT Total $=\frac{1}{2} n\{a+l\}=\frac{1}{2} \times 40 \times(2940+600) \quad(\mathrm{ft}$ value of $a) \mathrm{M} 1 \mathrm{~A} 1 \mathrm{ft}$ $2^{\text {nd }} \mathrm{A} 1$ for 70800 only	

Question Number	Scheme	Marks
Q6	$b^{2}-4 a c$ attempted, in terms of p. $(3 p)^{2}-4 p=0 \quad$ o.e. Attempt to solve for p e.g. $p(9 p-4)=0 \quad$ Must potentially lead to $p=k, k \neq 0$ $p=\frac{4}{9}$ (Ignore $p=0$, if seen)	M1 A1 M1 Alcso [4]
	$1^{\text {st }} \mathrm{M} 1$ for an attempt to substitute into $b^{2}-4 a c$ or $b^{2}=4 a c$ with b or c correct Condone x 's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only $1^{\text {st }} \mathrm{A} 1$ for any correct equation: $(3 p)^{2}-4 \times 1 \times p=0$ or better $2^{\text {nd }} \mathrm{M} 1$ for an attempt to factorize or solve their quadratic expression in p. Method must be sufficient to lead to their $p=\frac{4}{9}$. Accept factors or use of quadratic formula or $\left(p \pm \frac{2}{9}\right)^{2}=k^{2}$ (o.e. eg) $\left(3 p \pm \frac{2}{3}\right)^{2}=k^{2}$ or equivalent work on their eqn. $9 p^{2}=4 p \Rightarrow \frac{9 p^{\ell}}{\ell 2}=4$ which would lead to $9 p=4$ is OK for this $2^{\text {nd }}$ M1 ALT Comparing coefficients M1 for $(x+\alpha)^{2}=x^{2}+\alpha^{2}+2 \alpha x$ and A1 for a correct equation eg $3 p=2 \sqrt{p}$ M1 for forming solving leading to $\sqrt{p}=\frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.	

Question Number	Scheme	Marks
Q7 (a) (b) (c)	$\begin{align*} & \left(a_{2}=\right) 2 k-7 \\ & \left.\left(a_{3}=\right) 2(2 k-7)-7 \text { or } 4 k-14-7,=4 k-21 \quad{ }^{*}\right) \tag{*}\\ & \left(a_{4}=\right) 2(4 k-21)-7 \quad(=8 k-49) \\ & \quad \sum_{r=1}^{4} a_{r}=k+"(2 k-7) "+(4 k-21)+"(8 k-49) " \\ & k+(2 k-7)+(4 k-21)+(8 k-49)=15 k-77=43 \quad k=8 \end{align*}$	B1 (1) M1, A1cso (2) M1 M1 M1 A1 (4) [7]
(b) (c)	M1 must see 2(their $\left.a_{2}\right)-7$ or $2(2 k-7)-7$ or $4 k-14-7$. Their a_{2} must be a function of k. A1cso must see the $2(2 k-7)-7$ or $4 k-14-7$ expression and the $4 k-21$ with no incorrect working $1^{\text {st }}$ M1 for an attempt to find a_{4} using the given rule. Can be awarded for $8 k-49$ seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. $2^{\text {nd }}$ M1 for attempting the sum of the $1^{\text {st }} 4$ terms. Must have " + " not just, or clear attempt to sum. Follow through their a_{2} and a_{4} provided they are linear functions of k. Must lead to linear expression in k. Condone use of their linear $a_{3} \neq 4 k-21$ here too. $3^{\text {rd }}$ M1 for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $p k=q$ A1 for $k=8$ only so $k=\frac{120}{15}$ is A0 Answer Only (e.g. trial improvement) Accept $k=8$ only if $8+9+11+15=43$ is seen as well Sum $a_{2}+a_{3}+a_{4}+a_{5}$ or $a_{2}+a_{3}+a_{4}$ Allow: M1 if $8 k-49$ is seen, M0 for the sum (since they are not adding the $1^{\text {st }} 4$ terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(A B: m=\frac{2-7}{8-6},\left(=-\frac{5}{2}\right)\) \\
Using \(m_{1} m_{2}=-1: m_{2}=\frac{2}{5}\)
\[
y-7=\frac{2}{5}(x-6), \quad 2 x-5 y+23=0
\] \\
(o.e. with integer coefficients) \\
Using \(x=0\) in the answer to (a), \(y=\frac{23}{5}\) or 4.6 \\
Area of triangle \(=\frac{1}{2} \times 8 \times \frac{23}{5}=\frac{92}{5}\) (o.e) e.g. \(\left(18 \frac{2}{5}, 18.4, \frac{184}{10}\right)\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1, A1 (4) \\
M1, A1ft (2) \\
M1 A1 \\
(2) \\
[8]
\end{tabular} \\
\hline (a)
(b)

(c) \& | B1 for an expression for the gradient of $A B$. Does not need the $=-2.5$ |
| :--- |
| $1^{\text {st }}$ M1 for use of the perpendicular gradient rule. Follow through their m |
| $2^{\text {nd }} \mathrm{M} 1$ for the use of $(6,7)$ and their changed gradient to form an equation for l. |
| Can be awarded for $\frac{y-7}{x-6}=\frac{2}{5}$ o.e. |
| Alternative is to use $(6,7)$ in $y=m x+c$ to find a value for c. Score when |
| $c=\ldots$ is reached. |
| A1 for a correct equation in the required form and must have " $=0$ " and integer coefficients |
| M1 for using $x=0$ in their answer to part (a) e.g. $-5 y+23=0$ |
| A1ft for $y=\frac{23}{5}$ provided that $x=0$ clearly seen or $C(0,4.6)$. Follow through their equation in (a) |
| If $x=0, y=4.6$ are clearly seen but C is given as $(4.6,0)$ apply ISW and award the mark. |
| This A mark requires a simplified fraction or an exact decimal |
| Accept their 4.6 marked on diagram next to C for M1A1ft |
| M1 for $\frac{1}{2} \times 8 \times y_{C}$ so can follow through their y coordinate of C. |
| A1 for 18.4 (o.e.) but their y coordinate of C must be positive |
| Use of 2 triangles or trapezium and triangle |
| Award M1 when an expression for area of $O C B$ only is seen |
| Determinant approach |
| Award M1 when an expression containing $\frac{1}{2} \times 8 \times y_{C}$ is seen | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
(a) (b) (c)	$\begin{aligned} & {\left[(3-4 \sqrt{x})^{2}=\right] 9-12 \sqrt{x}-12 \sqrt{x}+(-4)^{2} x } \\ & 9 x^{-\frac{1}{2}}+16 x^{\frac{1}{2}}-24 \\ \mathrm{f}^{\prime}(x)= & -\frac{9}{2} x^{-\frac{3}{2}},+\frac{16}{2} x^{-\frac{1}{2}} \\ \mathrm{f}^{\prime}(9)= & -\frac{9}{2} \times \frac{1}{27}+\frac{16}{2} \times \frac{1}{3}=-\frac{1}{6}+\frac{16}{6}=\frac{5}{2} \end{aligned}$	M1 A1, A1 (3) M1 A1, A1ft (3) M1 A1 (2) [8]
(a) (b) (c)	M1 for an attempt to expand $(3-4 \sqrt{ } x)^{2}$ with at least 3 terms correct- as printed or better Or $9-k \sqrt{x}+16 x \quad(k \neq 0)$. See also the MR rule below $1^{\text {st }}$ A1 for their coefficient of $\sqrt{x}=16$. Condone writing $(\pm) 9 x^{\left(\pm \frac{1}{2}\right.}$ instead of $9 x^{-\frac{1}{2}}$ $2^{\text {nd }} \mathrm{A} 1$ for $B=-24$ or their constant term $=-24$ M1 for an attempt to differentiate an x term $x^{n} \rightarrow x^{n-1}$ $2^{\text {nd }} \mathrm{A} 1 \mathrm{ft}$ follow through their $A x^{\frac{1}{2}}$ but can be scored without a value for A, i.e. for $\frac{A}{2} x^{-\frac{1}{2}}$ M1 for some correct substitution of $x=9$ in their expression for $\mathrm{f}^{\prime}(x)$ including an attempt at $(9)^{ \pm \frac{k}{2}}$ (k odd) somewhere that leads to some appropriate multiples of $\frac{1}{3}$ or 3 A1 accept $\frac{15}{6}$ or any exact equivalent of 2.5 e.g. $\frac{45}{18}, \frac{135}{54}$ or even $\frac{67.5}{27}$ Misread (MR) Only allow MR of the form $\frac{(3-k \sqrt{x})^{2}}{\sqrt{x}}$ N.B. Leads to answer in (c) of $\frac{k^{2}-1}{6}$ Score as M1A0A0, M1A1A1ft, M1A1ft	

(a) B1 for correctly taking out a factor of x

M1 for an attempt to factorize their 3TQ e.g. $(x+p)(x+q)$ where $|p q|=9$.
So $(x-3)(x+3)$ will score M1 but A0
A1 for a fully correct factorized expression - accept $x(x-3)^{2}$
If they "solve" use ISW
S.C. If the only correct linear factor is $(x-3)$, perhaps from factor theorem, award B0M1A0

Do not award marks for factorising in part (b)

For the graphs

"Sharp points" will lose the $1^{\text {st }} \mathrm{B} 1$ in (b) but otherwise be generous on shape Condone $(0,3)$ in (b) and $(0,2),(0,5)$ in (c) if the points are marked in the correct places.
$2^{\text {nd }}$ B1 for a curve that starts or terminates at $(0,0)$ score B0
$4^{\text {th }} \mathrm{B} 1 \mathrm{ft}$ for a curve that touches (not crossing or terminating) at $(a, 0)$ where their $y=x(x-a)^{2}$

M1 for their graph moved horizontally (only) or a fully correct graph Condone a partial stretch if ignoring their values looks like a simple translation
A1 for their graph translated 2 to the right and crossing or touching the axis at 2 and 5 only

Allow a fully correct graph (as shown above) to score M1A1 whatever they have in (b)

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
Q11 (a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
M1 A1 \\
A1ft \\
M1, A1 \\
(5) \\
B1ft \\
M1, A1 \\
M1 \\
Alcso \\
(5) \\
[11]
\end{tabular} \\
\hline (a)
(b)

(c)

ALT \& | B1 there must be a clear attempt to substitute $x=2$ leading to 7 $\text { e.g. } 2^{3}-2 \times 2^{2}-2+9=7$ |
| :--- |
| $1^{\text {st }}$ M1 for an attempt to differentiate with at least one of the given terms fully correct. |
| $1^{\text {st }} \mathrm{A} 1$ for a fully correct expression |
| $2^{\text {nd }}$ A1ft for sub. $x=2$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ accept for a correct expression e.g. $3 \times(2)^{2}-4 \times 2-1$ |
| $2^{\text {nd }}$ M1 for use of their " 3 " (provided it comes from their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ and $x=2$) to find equation of tangent. Alternative is to use $(2,7)$ in $y=m x+c$ to find a value for c. Award when $c=\ldots$ is seen. |
| No attempted use of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in (b) scores $0 / 5$ |
| $1^{\text {st }}$ M1 for forming an equation from their $\frac{\mathrm{d} y}{\mathrm{~d} x}(\neq y)$ and their $-\frac{1}{m}$ (must be changed from m) |
| $1^{\text {st }} \mathrm{A} 1$ for a correct 3TQ all terms on LHS (condone missing $=0$) |
| $2^{\text {nd }}$ M1 for proceeding to $x=\ldots$ or $3 x=\ldots$ by formula or completing the square for a 3 TQ. |
| Not factorising. Condone \pm |
| $2^{\text {nd }}$ A1 for proceeding to given answer with no incorrect working seen. Can still have \pm. |
| Verify (for M1A1M1A1) |
| $1^{\text {st }}$ M1 for attempting to square need ≥ 3 correct values in $\frac{4+6+4 \sqrt{6}}{9}, 1^{\text {st }}$ A1 for $\frac{10+4 \sqrt{6}}{9}$ $2^{\text {nd }}$ M1 Dependent on $1^{\text {st }}$ M1 in this case for substituting in all terms of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ $2^{\text {nd }}$ A1cso for cso with a full comment e.g. "the x co-ord of Q is ..." | \&

\hline
\end{tabular}

(1)
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x-1$
edexc ${ }^{3}$

J une 2009

6664 Core Mathematics C2

Mark Scheme

Question Number	Scheme ${ }^{\text {S }}$
Q1	$\begin{align*} & \int\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x=\frac{2 x^{2}}{2}+\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}} \\ & \begin{aligned} \int_{1}^{4}\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x & =\left[x^{2}+2 x^{\frac{3}{2}}\right]_{1}^{4}=(16+2 \times 8)-(1+2) \\ & =29 \end{aligned}(29+C \text { scores } \mathrm{A} 0) \end{align*}$
	$1^{\text {st }}$ M1 for attempt to integrate $x \rightarrow k x^{2}$ or $x^{\frac{1}{2}} \rightarrow k x^{\frac{3}{2}}$. $1^{\text {st }} \mathrm{A} 1$ for $\frac{2 x^{2}}{2}$ or a simplified version. $2^{\text {nd }}$ A1 for $\frac{3 x^{\frac{3}{2}}}{(3 / 2)}$ or $\frac{3 x \sqrt{x}}{(3 / 2)}$ or a simplified version. Ignore $+C$, if seen, but two correct terms and an extra non-constant term scores M1A1A0. $2^{\text {nd }}$ M1 for correct use of correct limits ('top' - 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation). Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear. No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).

Question Number	Scheme \quad Marks
Q2 (a) (b)	
(a)	The terms can be 'listed' rather than added. Ignore any extra terms. M1 for either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as $\binom{7}{1},\binom{7}{1},\binom{7}{2},{ }^{7} C_{1},{ }^{7} C_{2}$. However, $448+k x$ or similar is M0. $\mathrm{B} 1, \mathrm{~A} 1, \mathrm{~A} 1$ for the simplified versions seen above. Alternative: Note that a factor 2^{7} can be taken out first: $2^{7}\left(1+\frac{k x}{2}\right)^{7}$, but the mark scheme still applies. Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128+448 k x+672 k^{2} x^{2} \quad$ M1 B1 A1 A1 $=4+14 k x+21 k^{2} x^{2} \quad$ isw (Full marks are still available in part (b)). M1 for equating their coefficient of x^{2} to 6 times that of $x \ldots$ to get an equation in k, \ldots or equating their coefficient of x to 6 times that of x^{2}, to get an equation in k. Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, e.g. $6 \times 448 k=672 k$, but beware $k=4$ following from this, which is A0. An equation in k alone is required for this M mark, so... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow k=4$ or similar is M0 A0 (equation in coefficients only is never seen), but ... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow 6 \times 448 k=672 k^{2} \Rightarrow k=4$ will get M1 A1 (as coefficients rather than terms have now been considered). The mistake $2\left(1+\frac{k x}{2}\right)^{7}$ would give a maximum of 3 marks: M1B0A0A0, M1A1

Question Number	Scheme	Marks
Q3 (a)	$\mathrm{f}(k)=-8$	B1 (1)
(b)	$\mathrm{f}(2)=4 \Rightarrow 4=(6-2)(2-k)-8$	M1
	So $\quad k=-1$	A1 (2)
(c)	$\mathrm{f}(x)=3 x^{2}-(2+3 k) x+(2 k-8)=3 x^{2}+x-10$	M1
	$=(3 x-5)(x+2)$	M1A1 (3)
		[6]

(b) M1 for substituting $x=2$ (not $x=-2$) and equating to 4 to form an equation in k. If the expression is expanded in this part, condone 'slips' for this M mark. Treat the omission of the -8 here as a 'slip' and allow the M mark.
Beware:
Substituting $x=-2$ and equating to $0(\mathrm{M} 0 \mathrm{~A} 0)$ also gives $k=-1$.
Alternative;
M1 for dividing by $(x-2)$, to get $3 x+$ (function of k), with remainder as a function of k, and equating the remainder to 4 . [Should be $3 x+(4-3 k)$, remainder $-4 k$].

No working:

$k=-1$ with no working scores M0 A0.
(c)
$1^{\text {st }} \mathrm{M} 1$ for multiplying out and substituting their (constant) value of k (in either order).
The multiplying-out may occur earlier.
Condone, for example, sign slips, but if the 4 (from part (b)) is included in the $\mathrm{f}(x)$ expression, this is M0. The $2^{\text {nd }} \mathrm{M} 1$ is still available.
$2^{\text {nd }} \mathrm{M} 1$ for an attempt to factorise their three term quadratic (3TQ).

A1 The correct answer, as a product of factors, is required.
Allow $3\left(x-\frac{5}{3}\right)(x+2)$
Ignore following work (such as a solution to a quadratic equation).
If the 'equation' is solved but factors are never seen, the $2^{\text {nd }} \mathrm{M}$ is not scored.

Question Number	Scheme	Marks
Q4 (a) (b) (c)	$\begin{aligned} x=2 & \text { gives } 2.236 \\ x=2.5 & \text { gives } 2.580 \quad \text { (allow AWRT) Accept } \sqrt{ } 5 \\ \left(\frac{1}{2} \times \frac{1}{2}\right), & {[(1.414+3)+2(1.554+1.732+1.957+2.236+2.580)] } \\ & =6.133 \quad \text { (AWRT } 6.13, \text { even following minor slips) } \end{aligned}$ Overestimate 'Since the trapezia lie above the curve', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	B1 B1 (2) B1,[M1A1ft] A1 (4) B1 dB1 (2) $[8]$
(b)	B1 for $\frac{1}{2} \times \frac{1}{2}$ or equivalent. For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mi omit one of the values from the second bracket, this can be considered as a slip and the be allowed. Bracketing mistake: i.e. $\left(\frac{1}{2} \times \frac{1}{2}\right)(1.414+3)+2(1.554+1.732+1.957+2.236+2.580)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.414+1.554)+\frac{1}{4}(1.554+1.732)+\ldots \ldots \ldots \ldots \ldots \ldots \frac{1}{4}(2.580+3)\right]$ $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for correct expression, ft their 2.236 and their 2.580 $1^{\text {st }} \mathrm{B} 1$ for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. $2^{\text {nd }} \mathrm{B} 1$ is dependent upon the $1^{\text {st }} \mathrm{B} 1$ (overestimate).	ke is to mark can

Question Number	Scheme		Marks
Q5	$324 r^{3}=96 \quad$ or $\quad r^{3}=\frac{96}{324} \quad$ or $\quad r^{3}=\frac{8}{27}$		M1
	$r=\frac{2}{3}$	(*)	Alcso (2)
	$a\left(\frac{2}{3}\right)^{2}=324 \quad \text { or } \quad a\left(\frac{2}{3}\right)^{5}=96 \quad a=\ldots,$	729	M1, A1 (2)
	$\mathrm{S}_{15}=\frac{729\left(1-\left[\frac{2}{3}\right]^{15}\right)}{1-\frac{2}{3}},=2182.00 \ldots$	(AWRT 2180)	M1A1ft, (3)
	$\mathrm{S}_{\infty}=\frac{729}{1-\frac{2}{3}}, \quad=2187$		M1, A1 (2) [9]

(a) M1 for forming an equation for r^{3} based on 96 and 324 (e.g. $96 r^{3}=324$ scores M1). The equation must involve multiplication/division rather than addition/subtraction.
A1 Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least 2 dp and the final answer $2 / 3$ is seen.
Alternative: (verification)
M1 Using $r^{3}=\frac{8}{27}$ and multiplying 324 by this (or multiplying by $r=\frac{2}{3}$ three times).
A1 Obtaining 96 (cso). (A conclusion is not required).
$324 \times\left(\frac{2}{3}\right)^{3}=96$ (no real evidence of calculation) is not quite enough and scores M1 A0.
(b)

M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by their r) twice from 324 (or 5 times from 96).
Exceptionally, allow M1 also for using $a r^{3}=324$ or $a r^{6}=96$ instead of $a r^{2}=324$ or $a r^{5}=96$, or for dividing by r three times from 324 (or 6 times from 96)... but no other exceptions are allowed.
(c)

M1 for use of sum to 15 terms formula with values of a and r. If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated.
$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct expression or correct ft their a with $r=\frac{2}{3}$.
$2^{\text {nd }}$ A1 for awrt 2180, even following 'minor inaccuracies'.
Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c).
Alternative:
M1 for adding 15 terms and $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for adding the 15 terms that ft from their a and $r=\frac{2}{3}$.
(d) M1 for use of correct sum to infinity formula with their a. For this mark, if a value of r different from the given value is being used, M1 can still be allowed providing $|r|<1$.

Question Number	Scheme \quad Marks $\%$ \% $\%$
Q6 (a) (b) (c)	
(a)	$1^{\text {st }} \mathrm{M} 1$ for attempt to complete square. Allow $(x \pm 3)^{2} \pm k$, or $(y \pm 2)^{2} \pm k, k \neq 0$. $1^{\text {st }} \mathrm{A} 1 x$-coordinate 3, $2^{\text {nd }} \mathrm{A} 1 \quad y$-coordinate -2 $2^{\text {nd }}$ M1 for a full method leading to $r=\ldots$, with their 9 and their 4, $3^{\text {rd }} \mathrm{A} 15$ or $\sqrt{25}$ The $1^{\text {st }} \mathrm{M}$ can be implied by $(\pm 3, \pm 2)$ but a full method must be seen for the $2^{\text {nd }} \mathrm{M}$. Where the 'diameter' in part (b) has clearly been used to answer part (a), no marks in (a), but in this case the M1 (not the A1) for part (b) can be given for work seen in (a). Alternative $1^{\text {st }}$ M1 for comparing with $x^{2}+y^{2}+2 g x+2 f y+c=0$ to write down centre $(-g,-f)$ directly. Condone sign errors for this M mark. $2^{\text {nd }} \mathrm{M} 1$ for using $r=\sqrt{g^{2}+f^{2}-c}$. Condone sign errors for this M mark. $1^{\text {st }} \mathrm{M} 1$ for setting $x=0$ and getting a 3 TQ in y by using eqn. of circle. $2^{\text {nd }} \mathrm{M} 1$ (dep.) for attempt to solve a 3 TQ leading to at least one solution for y. Alternative 1: (Requires the B mark as in the main scheme) $1^{\text {st }} \mathrm{M}$ for using $(3,4,5)$ triangle with vertices $(3,-2),(0,-2),(0, y)$ to get a linear or quadratic equation in y (e.g. $\left.3^{2}+(y+2)^{2}=25\right)$. $2^{\text {nd }} \mathrm{M}$ (dep.) as in main scheme, but may be scored by simply solving a linear equation. Alternative 2: (Not requiring realisation that R is on the circle) B1 for attempt at $m_{P R} \times m_{Q R}=-1$, (NOT $m_{P Q}$) or for attempt at Pythag. in triangle PQR. $1^{\text {st }} \mathrm{M} 1$ for setting $x=0$, i.e. $(0, y)$, and proceeding to get a 3 TQ in y. Then main scheme. Alternative 2 by 'verification': B1 for attempt at $m_{P R} \times m_{Q R}=-1$, (NOT $m_{P Q}$) or for attempt at Pythag. in triangle $P Q R$. $1^{\text {st }}$ M1 for trying $(0,2)$. $2^{\text {nd }} \mathrm{M} 1$ (dep.) for performing all required calculations. A1 for fully correct working and conclusion.

Question Number	Scheme ${ }^{\text {a }}$ (Mark
Q7 (i) (ii)	
(i)	$1^{\text {st }} \mathrm{B} 1$ for -45 seen $\quad(\alpha$, where $\|\alpha\|<90)$ $2^{\text {nd }} \mathrm{B} 1$ for 135 seen, or $\mathrm{ft}(180+\alpha)$ if α is negative, or $(\alpha-180)$ if α is positive. If $\tan \theta=k$ is obtained from wrong working, $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ is still available. $3^{\text {rd }} \mathrm{B} 1$ for awrt $24 \quad(\beta$, where $\|\beta\|<90)$ $4^{\text {th }} \mathrm{B} 1$ for awrt 156 , or $\mathrm{ft}(180-\beta)$ if β is positive, or $-(180+\beta)$ if β is negative. If $\sin \theta=k$ is obtained from wrong working, $4^{\text {th }} \mathrm{B} 1 \mathrm{ft}$ is still available. $1^{\text {st }}$ M1 for use of $\tan x=\frac{\sin x}{\cos x}$. Condone $\frac{3 \sin x}{3 \cos x}$. $2^{\text {nd }} \mathrm{M} 1$ for correct work leading to 2 factors (may be implied). $1^{\text {st }} \mathrm{B} 1$ for $0,2^{\text {nd }} \mathrm{B} 1$ for 180 . $3^{\text {rd }} \mathrm{B} 1$ for awrt $41 \quad(\gamma$, where $\|\gamma\|<180)$ $4^{\text {th }} \mathrm{B} 1$ for awrt 319 , or $\mathrm{ft}(360-\gamma)$. If $\cos \theta=k$ is obtained from wrong working, $4^{\text {th }} \mathrm{B} 1 \mathrm{ft}$ is still available. N.B. Losing $\sin x=0$ usually gives a maximum of 3 marks M1M0B0B0B1B1 Alternative: (squaring both sides) $1^{\text {st }} \mathrm{M} 1$ for squaring both sides and using a 'quadratic' identity. e.g. $16 \sin ^{2} \theta=9\left(\sec ^{2} \theta-1\right)$ $2^{\text {nd }} \mathrm{M} 1$ for reaching a factorised form. e.g. $\left(16 \cos ^{2} \theta-9\right)\left(\cos ^{2} \theta-1\right)=0$ Then marks are equivalent to the main scheme. Extra solutions, if not rejected, are penalised as in the main scheme. For both parts of the question: Extra solutions outside required range: Ignore Extra solutions inside required range: For each pair of B marks, the $2^{\text {nd }} \mathrm{B}$ mark is lost if there are two correct values and one or more extra solution(s), e.g. $\tan \theta=-1 \Rightarrow \theta=45,-45,135$ is B 1 B 0 Answers in radians: Loses a maximum of 2 B marks in the whole question (to be deducted at the first and second occurrence).

Question Number	Scheme ${ }^{\text {a }}$ Marks
Q8 (a) (b)	
(a)	M1 for getting out of logs correctly. If done by change of base, $\log _{10} y=-0.903 \ldots$ is insufficient for the M1, but $y=10^{-0.903}$ scores M1. A1 for the exact answer, e.g. $\log _{10} y=-0.903 \Rightarrow y=0.12502$.. scores M1 (implied) A0. Correct answer with no working scores both marks. Allow both marks for implicit statements such as $\log _{2} 0.125=-3$. $1^{\text {st }}$ M1 for expressing 32 or 16 or 512 as a power of 2 , or for a change of base enabling evaluation of $\log _{2} 32, \log _{2} 16$ or $\log _{2} 512$ by calculator. (Can be implied by 5,4 or 9 respectively). $1^{\text {st }} \mathrm{A} 1$ for 9 (exact). $2^{\text {nd }}$ M1 for getting $\left(\log _{2} x\right)^{2}=$ constant. The constant can be a \log or a sum of logs. If written as $\log _{2} x^{2}$ instead of $\left(\log _{2} x\right)^{2}$, allow the M mark only if subsequent work implies correct interpretation. $2^{\text {nd }} \mathrm{A} 1$ for 8 (exact). Change of base methods leading to a non-exact answer score A0. $3^{\text {rd }} \mathrm{A} 1 \mathrm{ft}$ for an answer of $\frac{1}{\text { their } 8}$. An ft answer may be non-exact. Possible mistakes: $\log _{2}\left(2^{9}\right)=\log _{2}\left(x^{2}\right) \Rightarrow x^{2}=2^{9} \Rightarrow x=\ldots$ scores M1A1(implied by 9)M0A0A0 $\log _{2} 512=\log _{2} x \times \log _{2} x \Rightarrow x^{2}=512 \Rightarrow x=\ldots$ scores M0A0(9 never seen)M1A0A0 $\log _{2} 48=\left(\log _{2} x\right)^{2} \Rightarrow\left(\log _{2} x\right)^{2}=5.585 \Rightarrow x=5.145, x=0.194$ scores M0A0M1A0A1ft No working (or 'trial and improvement'): $x=8$ scores M0 A0 M1 A1 A0

Q9 (a) (Arc length $=) r \theta=r \times 1=r$. Can be awarded by implication from later work, e.g.
B1 $3 r h$ or $(2 r h+r h)$ in the S formula. (Requires use of $\theta=1)$.
(Sector area $=$) $\frac{1}{2} r^{2} \theta=\frac{1}{2} r^{2} \times 1=\frac{r^{2}}{2}$. Can be awarded by implication from later
B1
work, e.g. the correct volume formula. (Requires use of $\theta=1$).
Surface area $=2$ sectors +2 rectangles + curved face

$$
\left(=r^{2}+3 r h\right) \quad(\text { See notes below for what is allowed here })
$$

Volume $=300=\frac{1}{2} r^{2} h$
Sub for $h: S=r^{2}+3 \times \frac{600}{r}=r^{2}+\frac{1800}{r}$
(c) $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=\ldots \quad$ and consider sign, $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2+\frac{3600}{r^{3}}>0$ so point is a minimum
(d)
$S_{\min }=(9.65 \ldots)^{2}+\frac{1800}{9.65 \ldots}$
(Using their value of r, however found, in the given S formula)
$=279.65 \ldots$ (AWRT: 280) (Dependent on full marks in part (b))
(a) M1 for attempting a formula (with terms added) for surface area. May be incomplete or wrong and may have extra term(s), but must have an r^{2} (or $r^{2} \theta$) term and an $r h($ or $r h \theta)$ term.
(b)

In parts (b), (c) and (d), ignore labelling of parts
$1^{\text {st }} \mathrm{M} 1$ for attempt at differentiation (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$
$2^{\text {nd }}$ M1 for setting their derivative (a 'changed function') $=0$ and solving as far as $r^{3}=\ldots$ (depending upon their 'changed function', this could be $r=\ldots$ or $r^{2}=\ldots$, etc., but the algebra must deal with a negative power of r and should be sound apart from possible sign errors, so that $r^{n}=\ldots$ is consistent with their derivative).
(c) M1 for attempting second derivative (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$, and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0).
A1 ft for a correct second derivative (or correct ft from their first derivative) and a valid reason (e.g. >0), and conclusion. The actual value of the second derivative, if found, can be ignored. To score this mark as ft , their second derivative must indicate a minimum.
Alternative:
M1: Find value of $\frac{\mathrm{d} S}{\mathrm{~d} r}$ on each side of their value of r and consider sign.
A1ft: Indicate sign change of negative to positive for $\frac{\mathrm{d} S}{\mathrm{~d} r}$, and conclude minimum. Alternative:
M1: Find value of S on each side of their value of r and compare with their 279.65.
A1ft: Indicate that both values are more than 279.65 , and conclude minimum.

J une 2009

6665 Core Mathematics C3

Mark Scheme

Question Number	Scheme			ks $/$ \%
(d)	$3 \sin 2 x+4 \cos 2 x=2$			
	$5 \cos (2 x-36.87)=2$			
	$\cos (2 x-36.87)=\frac{2}{5}$	$\cos (2 x \pm \text { their } \alpha)=\frac{2}{\text { their } R}$	M1	
	$(2 x-36.87)=66.42182 \ldots$.	awrt 66	A1	
	$(2 x-36.87)=360-66.42182 \ldots$.			
	Hence, $x=51.64591 \ldots$, 165.22409 ...	One of either awrt 51.6 or awrt 51.7 or awrt 165.2 or awrt 165.3	A1	
		Both awrt 51.6 AND awrt 165.2	A1	(4)
		If there are any EXTRA solutions inside the range $0 \leq x<180^{\circ}$ then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 \leq x<180^{\circ}$.		
				[12]

Question	Scheme	Marks $/ 0.0 / 3 / 3$

Q7

$$
\mathrm{f}(x)=1-\frac{2}{(x+4)}+\frac{x-8}{(x-2)(x+4)}
$$

$$
x \in \mathbb{R}, x \neq-4, x \neq 2
$$

(a)
$\mathrm{f}(x)=\frac{(x-2)(x+4)-2(x-2)+x-8}{(x-2)(x+4)}$
$=\frac{x^{2}+2 x-8-2 x+4+x-8}{(x-2)(x+4)}$
$=\frac{x^{2}+x-12}{[(x+4)(x-2)]}$
$=\frac{(x+4)(x-3)}{[(x+4)(x-2)]}$
$=\frac{(x-3)}{(x-2)}$
(b)
$\mathrm{g}(x)=\frac{\mathrm{e}^{x}-3}{\mathrm{e}^{x}-2} \quad x \in \mathbb{R}, x \neq \ln 2$.

Apply quotient rule: $\left\{\begin{array}{ll}u=\mathrm{e}^{x}-3 & v=\mathrm{e}^{x}-2 \\ \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{x} & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{x}\end{array}\right\}$

$$
\mathrm{g}^{\prime}(x)=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}-2\right)-\mathrm{e}^{x}\left(\mathrm{e}^{x}-3\right)}{\left(\mathrm{e}^{x}-2\right)^{2}}
$$

$$
=\frac{\mathrm{e}^{2 x}-2 \mathrm{e}^{x}-\mathrm{e}^{2 x}+3 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}
$$

$$
=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}
$$

An attempt to combine to one
fraction
M1
Correct result of combining all three fractions

Simplifies to give the correct numerator. Ignore omission of denominator

An attempt to factorise the numerator.

Correct result

Applying $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
Correct differentiation

A1

Question Number	Scheme	Marks
Q1	$\begin{aligned} f(x) & =\frac{1}{\sqrt{ }(4+x)}=(4+x)^{-\frac{1}{2}} \\ & =(4)^{-\frac{1}{2}}(1+\ldots) \cdots \quad \frac{1}{2}(1+\ldots) \cdots \text { or } \frac{1}{2 \sqrt{ }(1+\ldots)} \\ & =\ldots\left(1+\left(-\frac{1}{2}\right)\left(\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(\frac{x}{4}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x}{4}\right)^{3}+\ldots\right) \end{aligned}$ ft their $\left(\frac{x}{4}\right)$ $=\frac{1}{2}-\frac{1}{16} x,+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3}+\ldots$ Alternative $\begin{aligned} f(x) & =\frac{1}{\sqrt{ }(4+x)}=(4+x)^{-\frac{1}{2}} \\ & =\underline{4^{-\frac{1}{2}}}+\left(-\frac{1}{2}\right) 4^{-\frac{3}{2}} x+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2} 4^{-\frac{5}{2}} x^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1.2 .3} 4^{-\frac{1}{2}} x^{3}+\ldots \\ & =\frac{1}{2}-\frac{1}{16} x,+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3}+\ldots \end{aligned}$	M1 B1 M1 A1ft A1, A1 (6) [6] M1 B1 M1 A1 A1, A1 (6)

Question Number	Scheme	Marks
Q3 (a)	$\begin{aligned} \mathrm{f}(x) & =\frac{4-2 x}{(2 x+1)(x+1)(x+3)}=\frac{A}{2 x+1}+\frac{B}{x+1}+\frac{C}{x+3} \\ 4-2 x & =A(x+1)(x+3)+B(2 x+1)(x+3)+C(2 x+1)(x+1) \end{aligned}$ A method for evaluating one constant $\begin{aligned} & x \rightarrow-\frac{1}{2}, \quad 5=A\left(\frac{1}{2}\right)\left(\frac{5}{2}\right) \Rightarrow A=4 \\ & x \rightarrow-1, \quad 6=B(-1)(2) \Rightarrow B=-3 \\ & x \rightarrow-3, \quad 10=C(-5)(-2) \Rightarrow C=1 \end{aligned}$ any one correct constant all three constants correct	M1 M1 A1 A1 (4)
	(i) $\int\left(\frac{4}{2 x+1}-\frac{3}{x+1}+\frac{1}{x+3}\right) d x$ $=\frac{4}{2} \ln (2 x+1)-3 \ln (x+1)+\ln (x+3)+C \quad$ A1 two \ln terms correct All three \ln terms correct and " $+C$ "; ft constants (ii) $[2 \ln (2 x+1)-3 \ln (x+1)+\ln (x+3)]_{0}^{2}$	M1 A1ft Alft (3)
	$\begin{aligned} & =(2 \ln 5-3 \ln 3+\ln 5)-(2 \ln 1-3 \ln 1+\ln 3) \\ & =3 \ln 5-4 \ln 3 \\ & =\ln \left(\frac{5^{3}}{3^{4}}\right) \\ & =\ln \left(\frac{125}{81}\right) \end{aligned}$	M1 M1 A1 (3)
		[10]

Question Number	Scheme
Q5 (a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=-4 \sin 2 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=6 \cos t$
	$\frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{6 \cos t}{4 \sin 2 t}$

(b)

At $t=\frac{\pi}{3}, \quad m=-\frac{3}{4 \times \frac{\sqrt{3}}{2}}=-\frac{\sqrt{ } 3}{2} \quad$ accept equivalents, awrt -0.87

Use of

$$
\cos 2 t=1-2 \sin ^{2} t
$$

$$
\frac{x}{2}=1-2\left(\frac{y}{6}\right)^{2}
$$

Leading to

$$
\begin{array}{rlr}
y & =\sqrt{ }(18-9 x) & (=3 \sqrt{ }(2-x)) \\
-2 \leq x \leq 2 & \text { cao } \\
0 \leq \mathrm{f}(x) \leq 6 & \text { either } 0 \leq \mathrm{f}(x) \text { or } \mathrm{f}(x) \leq 6
\end{array}
$$

Fully correct. Accept $0 \leq y \leq 6,[0,6]$
B1, B1

M1

A1
(4)

M1

$$
\cos 2 t=\frac{x}{2}, \sin t=\frac{y}{6}
$$

M1

A1
B1
(4)

B1
B1
(2)

$$
y=(18-9 x)^{\frac{1}{2}}
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}(18-9 x)^{-\frac{1}{2}} \times(-9)
$$

B1

$$
\text { At } t=\frac{\pi}{3}, x=\cos \frac{2 \pi}{3}=-1
$$

B1

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times \frac{1}{\sqrt{ }(27)} \times-9=-\frac{\sqrt{ } 3}{2}
$$

M1 A1 (4)
(2)

$$
\begin{aligned}
& y^{2}=18-9 x \\
& 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-9 \\
& \text { At } t=\frac{\pi}{3}, \quad y=6 \sin \frac{\pi}{3}=3 \sqrt{ } 3 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{9}{2 \times 3 \sqrt{ } 3}=-\frac{\sqrt{ } 3}{2}
\end{aligned}
$$

Q8 (a)

$$
\int \sin ^{2} \theta \mathrm{~d} \theta=\frac{1}{2} \int(1-\cos 2 \theta) \mathrm{d} \theta=\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta \quad(+C)
$$

(b) $x=\tan \theta \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sec ^{2} \theta$

$$
\pi \int y^{2} \mathrm{~d} x=\pi \int y^{2} \frac{\mathrm{~d} x}{\mathrm{~d} \theta} \mathrm{~d} \theta=\pi \int(2 \sin 2 \theta)^{2} \sec ^{2} \theta \mathrm{~d} \theta
$$

$$
=\pi \int \frac{(2 \times 2 \sin \theta \cos \theta)^{2}}{\cos ^{2} \theta} \mathrm{~d} \theta
$$

$$
=16 \pi \int \sin ^{2} \theta \mathrm{~d} \theta
$$

$$
k=16 \pi
$$

$$
x=0 \Rightarrow \tan \theta=0 \Rightarrow \theta=0, \quad x=\frac{1}{\sqrt{ } 3} \Rightarrow \tan \theta=\frac{1}{\sqrt{ } 3} \Rightarrow \theta=\frac{\pi}{6}
$$

$$
\left(V=16 \pi \int_{0}^{\frac{\pi}{6}} \sin ^{2} \theta \mathrm{~d} \theta\right)
$$

$$
V=16 \pi\left[\frac{1}{2} \theta-\frac{\sin 2 \theta}{4}\right]_{0}^{\frac{\pi}{6}}
$$

$$
=16 \pi\left[\left(\frac{\pi}{12}-\frac{1}{4} \sin \frac{\pi}{3}\right)-(0-0)\right]
$$

Use of correct limits
$=16 \pi\left(\frac{\pi}{12}-\frac{\sqrt{ } 3}{8}\right)=\frac{4}{3} \pi^{2}-2 \pi \sqrt{ } 3 \quad p=\frac{4}{3}, q=-2$

M1 A1

M1 A1

M1
A1
B1
(5)

M1

A1
(3)

Question Number	Scheme	Marks
Q1 $\begin{aligned} & \text { (a) } \\ & \\ & \\ & \text { (b) } \\ & \\ & \\ & \text { (c) } \\ & \\ & \\ & \text { (d) }\end{aligned}$	$\left\|z_{1}\right\|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$ (or awrt 2.24) $\alpha=\arctan \left(\frac{1}{2}\right) \text { or } \arctan \left(-\frac{1}{2}\right)$ $\arg z_{1}=-0.46$ or 5.82 (awrt) (answer in degrees is A0 unless followed by correct conversion) $\begin{aligned} & \frac{-8+9 \mathrm{i}}{2-\mathrm{i}} \times \frac{2+\mathrm{i}}{2+\mathrm{i}} \\ = & \frac{-16-8 \mathrm{i}+18 \mathrm{i}-9}{5}=-5+2 \text { i i.e. } a=-5 \text { and } b=2 \text { or }-\frac{2}{5} a \end{aligned}$	(1) M1 A1 (2) M1 A1 (2) M1 A1 Alft (3) [8]
Notes	Alternative method to part (d) $-8+9 \mathrm{i}=(2-i)(a+b \mathrm{i})$, and so $2 a+b=-8$ and $2 b-a=9$ and attempt to solve as far as equation in one variable So $a=-5$ and $b=2$ (a) B1 needs both complex numbers as either points or vectors, in correct quadrants and with 'reasonably correct' relative scale (b) M1 Attempt at Pythagoras to find modulus of either complex number A1 condone correct answer even if negative sign not seen in (-1) term A0 for $\pm \sqrt{5}$ (c) $\arctan 2$ is M0 unless followed by $\frac{3 \pi}{2}+\arctan 2$ or $\frac{\pi}{2}-\arctan 2$ Need to be clear that $\operatorname{argz}=-0.46$ or 5.82 for A 1 (d) M1 Multiply numerator and denominator by conjugate of their denominator A1 for -5 and A1 for 2 i (should be simplified) Alternative scheme for (d) Allow slips in working for first M1	M1 Al Alcao

Question Number	Scheme	Marks
Q3 (a)	$x^{2}+4=0 \quad \Rightarrow \quad x=k \mathrm{i}, \quad x= \pm 2 \mathrm{i}$ Solving 3-term quadratic $\begin{aligned} & x=\frac{-8 \pm \sqrt{64-100}}{2}=-4+3 i \text { and }-4-3 i \\ & 2 i+(-2 i)+(-4+3 i)+(-4-3 i)=-8 \end{aligned}$ Alternative method: Expands $\mathrm{f}(x)$ as quartic and chooses \pm coefficient of x^{3} -8	M1, A1 M1 A1 Alft (5) M1 Alcso (2) [7] M1 A1 cso
Notes	(a) Just $x=2 \mathrm{i}$ is M1 A0 $x= \pm 2 \text { is M0A0 }$ M1 for solving quadratic follows usual conventions, then A1 for a correct root (simplified as here) and A1 ft for conjugate of first answer. Accept correct answers with no working here. Do not give accuracy marks for factors unless followed by roots. (b) M1 for adding four roots of which at least two are complex conjugates and getting a real answer. A1 for -8 following correct roots or the alternative method. If any incorrect working in part (a) this A mark will be A0	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q4 \(\begin{array}{rr}\text { (a) } \\ \& (b) \\ \& \\ \& \\ \text { (c) }\end{array}\) \& \& \begin{tabular}{l}
M1 A1ft \\
Alcao \\
M1 \\
A1 \\
A1 \\
(3) \\
[10]
\end{tabular} \\
\hline Alternative

Notes \& \begin{tabular}{l}
Uses equation of line joining $(2.2,-0.192)$ to $(2.3,0.877)$ and substitutes $y=0$ $y+0.192=\frac{0.192+0.877}{0.1}(x-2.2)$ and $y=0$, so $\alpha \approx 2.218$ or awrt as before $($ NB Gradient $=10.69)$

(a) M1 for attempt at $f(2.2)$ and $f(2.3)$

A1 need indication that there is a change of sign $-($ could be $-0.19<0,0.88>0)$ and need conclusion. (These marks may be awarded in other parts of the question if not done in part (a))

(b) B1 for seeing correct derivative (but may be implied by later correct work)

B1 for seeing 10.12 or this may be implied by later work

M1 Attempt Newton-Raphson with their values

A1ft may be implied by the following answer (but does not require an evaluation)

Final A1 must 2.219 exactly as shown. So answer of 2.21897 would get $4 / 5$

If done twice ignore second attempt

(c) M1 Attempt at ratio with their values of $\pm \mathrm{f}(2.2)$ and $\pm \mathrm{f}(2.3)$.

N.B. If you see $0.192-\alpha$ or $0.877-\alpha$ in the fraction then this is M0

A1 correct linear expression and definition of variable if not α (may be implied by final correct answer- does not need 3 dp accuracy)

A1 for awrt 2.218

If done twice ignore second attempt

 \&

M1

A1, A1
\end{tabular}

\hline
\end{tabular}

Question Number	Scheme	Marks
Q5 (a) (b)	$\mathbf{R}^{2}=\left(\begin{array}{ll} a^{2}+2 a & 2 a+2 b \\ a^{2}+a b & 2 a+b^{2} \end{array}\right)$ Puts their $a^{2}+2 a=15$ or their $2 a+b^{2}=15$ or their $\left(a^{2}+2 a\right)\left(2 a+b^{2}\right)-\left(a^{2}+a b\right)(2 a+2 b)=225($ or to 15$)$, Puts their $a^{2}+a b=0$ or their $2 a+2 b=0$ Solve to find either a or b $a=3, \quad b=-3$	M1 A1 A1 (3) M1, M1 M1 A1, A1 (5) [8]
Alternative for (b) Notes	Uses $\mathbf{R}^{2} \times$ column vector $=15 \times$ column vector, and equates rows to give two equations in a and b only Solves to find either a or b as above method (a) 1 term correct: M1 A0 A0 2 or 3 terms correct: M1 A1 A0 (b) M1 M1 as described in scheme (In the alternative scheme column vector can be general or specific for first M1 but must be specific for $2^{\text {nd }}$ M1) M1 requires solving equations to find a and/or b (though checking that correct answer satisfies the equations will earn this mark) This mark can be given independently of the first two method marks. So solving $\mathbf{M}^{2}=15 \mathbf{M}$ for example gives M0M0M1A0A0 in part (b) Also putting leading diagonal $=0$ and other diagonal $=15$ is M0M0M1A0A0 (No possible solutions as $a>0$) A1 A1 for correct answers only Any Extra answers given, e.g. $a=-5$ and $b=5$ or wrong answers - deduct last A1 awarded So the two sets of answers would be A1 A0 Just the answer . $a=-5$ and $b=5$ is A0 A0 Stopping at two values for a or for $b-$ no attempt at other is A0A0 Answer with no working at all is 0 marks	M1, M1 M1 A1 A1

Question Number	Scheme	Marks $\%$
Q6 $\begin{array}{r}\text { (a) } \\ \\ \\ \text { (b) } \\ \\ \text { (c) } \\ \\ \\ \text { (d) }\end{array}$	$y^{2}=(8 t)^{2}=64 t^{2} \text { and } 16 x=16 \times 4 t^{2}=64 t^{2}$ Or identifies that $a=4$ and uses general coordinates $\left(a t^{2}, 2 a t\right)$ $(4,0)$ $y=4 x^{\frac{1}{2}} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x^{-\frac{1}{2}}$ Replaces x by $4 t^{2}$ to give gradient Uses Gradient of normal is $-\frac{1}{\text { gradient of curve }}$ $y-8 t=-t\left(x-4 t^{2}\right) \quad \Rightarrow \quad y+t x=8 t+4 t^{3}$ At $N, y=0$, so $x=8+4 t^{2}$ or $\frac{8 t+4 t^{3}}{t}$ Base $S N=\left(8+4 t^{2}\right)-4\left(=4+4 t^{2}\right)$ Area of $\triangle P S N=\frac{1}{2}\left(4+4 t^{2}\right)(8 t)=16 t\left(1+t^{2}\right)$ or $16 t+16 t^{3}$ for $t>0$ $\left\{\right.$ Also Area of $\triangle P S N=\frac{1}{2}\left(4+4 t^{2}\right)(-8 t)=-16 t\left(1+t^{2}\right)$ for $\left.t<0\right\}$ this is not required Alternatives: (c) $\frac{\mathrm{d} x}{\mathrm{~d} t}=8 t \quad$ and $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=8 \quad$ B1 $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{t}$ M1, then as in main scheme. (c) $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=16$ B1 (or uses $x=\frac{y^{2}}{8}$ to give $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{2 y}{8}$) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{y}=\frac{8}{8 t}=\frac{1}{t}$ M1, then as in main scheme.	B1 (1) B1 (1) B1 M1, M1 M1 Alcso (5) B1 B1ft M1 A1 (4) [11]
Notes	(c) Second M1 - need not be function of t Third M1 requires linear equation (not fraction) and should include the parameter t but could be given for equation of tangent (So tangent equation loses 2 marks only and could gain B1M1M0M1A0) (d) Second B1 does not require simplification and may be a constant rather than an expression in t. M1 needs correct area of triangle formula using $1 / 2$ 'their $S N^{\prime} \times 8 t$ Or may use two triangles in which case need $\left(4 t^{2}-4\right)$ and $\left(4 t^{2}+8-4 t^{2}\right)$ for B1 ft Then Area of $\triangle P S N=\frac{1}{2}\left(4 t^{2}-4\right)(8 t)+\frac{1}{2}\left(4 t^{2}+8-4 t^{2}\right)(8 t)=16 t\left(1+t^{2}\right)$ or $16 t+16 t^{3}$	

Question Number	Scheme	Marks
Q7 (a) (b) (c)	Use $4 a-(-2 \times-1)=0 \quad \Rightarrow \quad a,=\frac{1}{2}$ Determinant: $(3 \times 4)-(-2 \times-1)=10$ $\begin{align*} & \mathbf{B}^{-1}=\frac{1}{10}\left(\begin{array}{ll} 4 & 2 \\ 1 & 3 \end{array}\right) \\ & \frac{1}{10}\left(\begin{array}{ll} 4 & 2 \\ 1 & 3 \end{array}\right)\binom{k-6}{3 k+12},=\frac{1}{10}\binom{4(k-6)+2(3 k+12)}{(k-6)+3(3 k+12)} \\ & \binom{k}{k+3} \quad \text { Lies on } y=x+3 \end{align*}$	M1, A1 (2) M1 M1 Alcso (3) M1, A1ft A1 (3) [8]
Notes	Alternatives: (c) $\quad\left(\begin{array}{cc}3 & -2 \\ -1 & 4\end{array}\right)\binom{x}{x+3},=\binom{3 x-2(x+3)}{-x+4(x+3)}$, $=\binom{x-6}{3 x+12}$, which was of the form $\quad(k-6,3 k+12)$ $\operatorname{Or}\left(\begin{array}{cc}3 & -2 \\ -1 & 4\end{array}\right)\binom{x}{y}, \quad=\binom{3 x-2 y}{-x+4 y}=\binom{k-6}{3 k+12}, \quad$ and solves simultaneous equations Both equations correct and eliminate one letter to get $x=k$ or $y=k+3$ or $10 x-10 y=-30$ or equivalent. Completely correct work (to $x=k$ and $y=k+3$), and conclusion lies on $y=x+3$ (a) Allow sign slips for first M1 (b) Allow sign slip for determinant for first M1 (This mark may be awarded for $1 / 10$ appearing in inverse matrix.) Second M1 is for correctly treating the 2 by 2 matrix, ie for $\left(\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right)$ Watch out for determinant $(3+4)-(-1+-2)=10-\mathrm{M} 0$ then final answer is A0 (c) M1 for multiplying matrix by appropriate column vector A1 correct work (ft wrong determinant) A1 for conclusion	M1, A1, A1 M1 A1 A1

Question Number	Scheme ${ }^{\text {S }}$ Marks
Q8 (a)	$\mathrm{f}(1)=5+8+3=16,($ which is divisible by 4$) . \quad(\therefore$ True for $n=1)$. Using the formula to write down $\mathrm{f}(k+1), \quad \mathrm{f}(k+1)=5^{k+1}+8(k+1)+3$ $\begin{aligned} \mathrm{f}(k+1)-\mathrm{f}(k) & =5^{k+1}+8(k+1)+3-5^{k}-8 k-3 \\ & =5\left(5^{k}\right)+8 k+8+3-5^{k}-8 k-3=4\left(5^{k}\right)+8 \end{aligned}$ $\mathrm{f}(k+1)=4\left(5^{k}+2\right)+\mathrm{f}(k)$, which is divisible by 4 \therefore True for $n=k+1$ if true for $n=k$. True for $n=1, \therefore$ true for all n. For $n=1,\left(\begin{array}{cc}2 n+1 & -2 n \\ 2 n & 1-2 n\end{array}\right)=\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)=\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)^{1} \quad(\therefore$ True for $n=1$. $\begin{array}{r} \left(\begin{array}{ll} 3 & -2 \\ 2 & -1 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 2 k+1 & -2 k \\ 2 k & 1-2 k \end{array}\right)\left(\begin{array}{cc} 3 & -2 \\ 2 & -1 \end{array}\right)=\left(\begin{array}{cc} 2 k+3 & -2 \\ 2 k+2 & -2 \\ & =\left(\begin{array}{cc} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{array}\right) \end{array} . . \begin{array}{r} \\ 2 \end{array}\right) \end{array}$ \therefore True for $n=k+1$ if true for $n=k$. True for $\boldsymbol{n}=1, \therefore$ true for all \boldsymbol{n}
(a) Alternative for $2^{\text {nd }} \mathrm{M}$:	$\begin{aligned} \hline \mathrm{f}(k+1) & =5\left(5^{k}\right)+8 k+8+3 & & \mathrm{M} 1 \\ & =4\left(5^{k}\right)+8+\left(5^{k}+8 k+3\right) & & \text { A1 or }=5\left(5^{k}+8 k+3\right)-32 k-4 \\ & =4\left(5^{k}+2\right)+\mathrm{f}(k), & & \text { or }=5 \mathrm{f}(k)-4(8 k+1) \\ & \quad \text { which is divisible by } 4 & & \text { A1 (or similar methods) } \end{aligned}$
Notes Part (b) Alternative	(a) B1 Correct values of 16 or 4 for $n=1$ or for $n=0$ (Accept "is a multiple of") M1 Using the formula to write down $\mathrm{f}(k+1)$ A1 Correct expression of $\mathrm{f}(k+1)$ (or for $\mathrm{f}(n+1)$ M1 Start method to connect $\mathrm{f}(k+1)$ with $\mathrm{f}(k)$ as shown A1 correct working toward multiples of 4 , A 1 ft result including $\mathrm{f}(k+1)$ as subject, A1cso conclusion (b) B1 correct statement for $n=1$ or $n=0$ First M1: Set up product of two appropriate matrices - product can be either way round A1 A0 for one or two slips in simplified result A1 A1 all correct simplified A0 A0 more than two slips M1: States in terms of $(k+1)$ A1 Correct statement A1 for induction conclusion May write $\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)^{k+1}=\left(\begin{array}{ll}2 k+3 & -2 k-2 \\ 2 k+2 & -2 k-1\end{array}\right)$. Then may or may not complete the proof. This can be awarded the second M (substituting $k+1$)and following A (simplification) in part (b). The first three marks are awarded as before. Concluding that they have reached the same matrix and therefore a result will then be part of final A1 cso but also need other statements as in the first method.

Question Number	Scheme		Marks
Q1 $\begin{aligned} & \text { (a) } \\ & \text { (b) }\end{aligned}$	$\frac{1}{r(r+2)}=\frac{1}{2 r}-\frac{1}{2(r+2)}$	$\frac{1}{2 r}-\frac{1}{2(r+2)}$	B1 aef
	$\sum_{r=1}^{n} \frac{4}{r(r+2)}=\sum_{r=1}^{n}\left(\frac{2}{r}-\frac{2}{r+2}\right)$		
	$\begin{aligned} & =\left(\frac{2}{\underline{1}}-\frac{2}{3}\right)+\left(\frac{2}{\underline{2}}-\frac{2}{4}\right)+\ldots \ldots \\ & \quad \ldots \ldots \ldots \ldots+\left(\frac{2}{n-1}-\frac{2}{\underline{n+1}}\right)+\left(\frac{2}{n}-\frac{2}{\underline{n+2}}\right) \end{aligned}$	List the first two terms and the last two terms	M1
	$=\frac{2}{1}+\frac{2}{2} ;-\frac{2}{n+1}-\frac{2}{n+2}$	Includes the first two underlined terms and includes the final two underlined terms. $\frac{2}{1}+\frac{2}{2}-\frac{2}{n+1}-\frac{2}{n+2}$	M1 A1
	$=3-\frac{2}{n+1}-\frac{2}{n+2}$		
	$\begin{aligned} & =\frac{3(n+1)(n+2)-2(n+2)-2(n+1)}{(n+1)(n+2)} \\ & =\frac{3 n^{2}+9 n+6-2 n-4-2 n-2}{(n+1)(n+2)} \end{aligned}$	Attempt to combine to an at least 3 term fraction to a single fraction and an attempt to take out the brackets from their numerator.	M1
	$=\frac{3 n^{2}+5 n}{(n+1)(n+2)}$		
	$=\frac{n(3 n+5)}{(n+1)(n+2)}$	Correct Result	A1 cso AG
			(5)
			[6]

Question Number	Scheme
Q2 (a)	$z^{3}=4 \sqrt{2}-4 \sqrt{2} i, \quad-\pi<\theta$, π
	${ }^{*}$
	$\begin{aligned} & r=\sqrt{(4 \sqrt{2})^{2}+(-4 \sqrt{2})^{2}}=\sqrt{32+32}=\sqrt{64}=8 \\ & \theta=-\tan ^{-1}\left(\frac{4 \sqrt{2}}{4 \sqrt{2}}\right)=-\frac{\pi}{4} \end{aligned}$
	$z^{3}=8\left(\cos \left(-\frac{\pi}{4}\right)+\mathrm{i} \sin \left(-\frac{\pi}{4}\right)\right)$
	$\text { So, } z=(8)^{\frac{1}{3}}\left(\cos \left(\frac{-\frac{\pi}{4}}{3}\right)+\mathrm{i} \sin \left(\frac{-\frac{\pi}{4}}{3}\right)\right)$
	$\Rightarrow z=2\left(\cos \left(-\frac{\pi}{12}\right)+\mathrm{i} \sin \left(-\frac{\pi}{12}\right)\right)$

Also, $z^{3}=8\left(\cos \left(\frac{7 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{7 \pi}{4}\right)\right)$

$$
\text { or } \quad z^{3}=8\left(\cos \left(-\frac{9 \pi}{4}\right)+\mathrm{i} \sin \left(-\frac{9 \pi}{4}\right)\right)
$$

$\Rightarrow z=2\left(\cos \frac{7 \pi}{12}+\mathrm{i} \sin \frac{7 \pi}{12}\right)$
and $z=2\left(\cos \left(\frac{-3 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{-3 \pi}{4}\right)\right)$

A valid attempt to find the modulus and argument of $4 \sqrt{2}-4 \sqrt{2} i$

Taking the cube root of the modulus and dividing the argument by 3 .

$$
2\left(\cos \left(-\frac{\pi}{12}\right)+\mathrm{i} \sin \left(-\frac{\pi}{12}\right)\right)
$$

Adding or subtracting 2π to the argument for z^{3} in order to find other roots.

Any one of the final two roots
Both of the final two roots.

Special Case 1: Award SC: M1M1A1M1A0A0 for ALL three of $2\left(\cos \frac{\pi}{12}+\mathrm{i} \sin \frac{\pi}{12}\right)$, $2\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$ and $2\left(\cos \left(\frac{-7 \pi}{12}\right)+i \sin \left(\frac{-7 \pi}{12}\right)\right)$.

Special Case 2: If r is incorrect (and not equal to 8) and candidate states the brackets () correctly then give the first accuracy mark ONLY where this is applicable.

 working. Such candidates will not get full marks

Question Number	
Q5	$y=\sec ^{2} x=(\sec x)^{2}$
	(a)

Either 2($\sec x)^{1}(\sec x \tan x)$

Apply product rule:
$\left\{\begin{array}{rlrl}u & =2 \sec ^{2} x & v & =\tan x \\ \frac{\mathrm{~d} u}{\mathrm{~d} x} & =4 \sec ^{2} x \tan x & \frac{\mathrm{~d} v}{\mathrm{~d} x} & =\sec ^{2} x\end{array}\right\}$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x$

$$
=4 \sec ^{2} x\left(\sec ^{2} x-1\right)+2 \sec ^{4} x
$$

Hence, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 \sec ^{4} x-4 \sec ^{2} x$
(b)

$$
\begin{aligned}
& y_{\frac{\pi}{4}}=(\sqrt{2})^{2}=\underline{2},\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{\frac{\pi}{4}}=2(\sqrt{2})^{2}(1)=\underline{4} \\
& \left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)_{\frac{\pi}{4}}=6(\sqrt{2})^{4}-4(\sqrt{2})^{2}=24-8=16 \\
& \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=24 \sec ^{3} x(\sec x \tan x)-8 \sec x(\sec x \tan x)
\end{aligned}
$$

$$
=24 \sec ^{4} x \tan x-8 \sec ^{2} x \tan x
$$

$$
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{\frac{\pi}{4}}=24(\sqrt{2})^{4}(1)-8(\sqrt{2})^{2}(1)=96-16=80
$$

$\sec x \approx 2+4\left(x-\frac{\pi}{4}\right)+\frac{16}{2}\left(x-\frac{\pi}{4}\right)^{2}+\frac{80}{6}\left(x-\frac{\pi}{4}\right)^{3}+\ldots$
$\left\{\sec x \approx 2+4\left(x-\frac{\pi}{4}\right)+8\left(x-\frac{\pi}{4}\right)^{2}+\frac{40}{3}\left(x-\frac{\pi}{4}\right)^{3}+\ldots\right\}$
or $2 \sec ^{2} x \tan x$

B1 aef

Two terms added with one of either $A \sec ^{2} x \tan ^{2} x$ or $B \sec ^{4} x$ in the correct form. Correct differentiation

Applies $\tan ^{2} x=\sec ^{2} x-1$ leading to the correct result.

Both $y_{\frac{\pi}{4}}=\underline{2}$ and $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{\frac{\pi}{4}}=\underline{4}$
Attempts to substitute $x=\frac{\pi}{4}$ into both terms in the expression for

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} .
$$

Two terms differentiated with either $24 \sec ^{4} x \tan x$ or
$-8 \sec ^{2} x \tan x$ being correct

Applies a Taylor expansion with at least 3 out of 4 terms ft correctly. Correct Taylor series expansion.

Question Number	
Q6	$w=\frac{z}{z+\mathrm{i}}, z=-\mathrm{i}$ $w(z+\mathrm{i})=z \Rightarrow w z+\mathrm{i} w=z \Rightarrow \mathrm{i} w=z-w z$ $\Rightarrow \mathrm{i} w=z(1-w) \Rightarrow z=\frac{\mathrm{i} w}{(1-w)}$ $\|z\|=3 \Rightarrow\left\|\frac{\mathrm{i} w}{1-w}\right\|=3$ $\left\{\begin{array}{l}\|\mathrm{i} w\|=3\|1-w\| \Rightarrow\|w\|=3\|w-1\| \Rightarrow\|w\|^{2}=9\|w-1\|^{2} \\ \Rightarrow\|u+\mathrm{i} v\|^{2}=9\|u+\mathrm{i} v-1\|^{2}\end{array}\right.$ $\Rightarrow u^{2}+v^{2}=9\left[(u-1)^{2}+v^{2}\right]$
$\left\{\begin{array}{l}\Rightarrow u^{2}+v^{2}=9 u^{2}-18 u+9+9 v^{2} \\ \Rightarrow 0=8 u^{2}-18 u+8 v^{2}+9\end{array}\right\}$	
$\Rightarrow 0=u^{2}-\frac{9}{4} u+v^{2}+\frac{9}{8}$	
$\Rightarrow\left(u-\frac{9}{8}\right)^{2}-\frac{81}{64}+v^{2}+\frac{9}{8}=0$	
$\Rightarrow\left(u-\frac{9}{8}\right)^{2}+v^{2}=\frac{9}{64}$	

Complete method of rearranging
to make z the subject.

$$
z=\frac{\mathrm{i} w}{(1-w)}
$$

Putting $\mid z$ in terms of their $w \mid=3$

Applies $w=u+\mathrm{i} v$, and uses Pythagoras correctly to get an equation in terms of u and v without any i's.
Correct equation.

Simplifies down to
$u^{2}+v^{2} \pm \alpha u \pm \beta v \pm \delta=0$.

Circle indicated on the Argand diagram in the correct position in follow through quadrants. Ignore plotted coordinates.

Region outside a circle indicated only.
dddM1
(8)

Question Number	Scheme	
Q7		$y=\left\|x^{2}-a^{2}\right\|, a>1$

B1
B1

$$
\begin{gathered}
-x^{2}+a^{2}=a^{2}-x \text { or } \\
x^{2}-a^{2}=x-a^{2}
\end{gathered}
$$

Applies the quadratic formula or completes the square in order to find the roots.

Both correct
x is less than their least value x is greater than their maximum value

For $\{|x|<a\}$, Lowest $<x<$ Highest
$0<x<1$
$x=0$
B1
$x=1$
A1

B1 ft
(b) $\left|x^{2}-a^{2}\right|=a^{2}-x, a>1$
$\{|x|>a\}, \quad x^{2}-a^{2}=a^{2}-x$

$$
\Rightarrow x^{2}+x-2 a^{2}=0
$$

$$
\Rightarrow x=\frac{-1 \pm \sqrt{1-4(1)\left(-2 a^{2}\right)}}{2}
$$

$$
\Rightarrow x=\frac{-1 \pm \sqrt{1+8 a^{2}}}{2}
$$

$\{|x|<a\}, \quad-x^{2}+a^{2}=a^{2}-x$

Question Number	Scheme		Marks
(b)	$x=-\mathrm{e}^{-3 t}+\mathrm{e}^{-t}$		M1
	$\begin{aligned} 3-\mathrm{e}^{2 t} & =0 \\ & \Rightarrow t=\frac{1}{2} \ln 3 \end{aligned}$	Differentiates their x to give $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and puts $\frac{\mathrm{d} x}{\mathrm{~d} t}$ equal to 0 .	
		A credible attempt to solve. $t=\frac{1}{2} \ln 3$ or $t=\ln \sqrt{3}$ or awrt 0.55	$\begin{aligned} & \text { dM1* } \\ & \text { A1 } \end{aligned}$
	So, $x=-\mathrm{e}^{-\frac{3}{2} \ln 3}+\mathrm{e}^{-\frac{1}{2} \ln 3}=-\mathrm{e}^{\ln 3^{-\frac{3}{2}}}+\mathrm{e}^{\ln 3^{-\frac{1}{2}}}$ $x=-3^{-\frac{3}{2}}+3^{-\frac{1}{2}}$	Substitutes their t back into x and an attempt to eliminate out the ln's.	ddM1
	$=-\frac{1}{3 \sqrt{3}}+\frac{1}{\sqrt{3}}=\frac{2}{3 \sqrt{3}}=\frac{2 \sqrt{3}}{9}$	uses exact values to give $\frac{2 \sqrt{3}}{9}$	A1 AG
	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-9 \mathrm{e}^{-3 t}+\mathrm{e}^{-t}$	$\begin{array}{r} \text { Finds } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \\ \text { and substitutes their } t \text { into } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \end{array}$	dM1*
	$=-9(3)^{-\frac{3}{2}}+3^{-\frac{1}{2}}=-\frac{9}{3 \sqrt{3}}+\frac{1}{\sqrt{3}}=-\frac{3}{\sqrt{3}}+\frac{1}{\sqrt{3}}$ As $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{9}{3 \sqrt{3}}+\frac{1}{\sqrt{3}}=\left\{-\frac{2}{\sqrt{3}}\right\}<0$ then x is maximum.	$-\frac{9}{3 \sqrt{3}}+\frac{1}{\sqrt{3}}<0$ and maximum	A1
			(7)
			[15]

J une 2009
6669 Further Pure Mathematics FP3 (new)
Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} & \quad \frac{7}{\cosh x}-\frac{\sinh x}{\cosh x}=5 \Rightarrow \frac{14}{e^{x}+e^{-x}}-\frac{\left(e^{x}-e^{-x}\right)}{e^{x}+e^{-x}}=5 \\ & \therefore 14-\left(e^{x}-e^{-x}\right)=5\left(e^{x}+e^{-x}\right) \Rightarrow 6 e^{x}-14+4 e^{-x}=0 \\ & \therefore 3 e^{2 x}-7 e^{x}+2=0 \Rightarrow\left(3 e^{x}-1\right)\left(e^{x}-2\right)=0 \\ & \therefore e^{x}=\frac{1}{3} \text { or } 2 \\ & x=\ln \left(\frac{1}{3}\right) \text { or } \ln 2 \end{aligned}$	M1 A1 M1 A1 B1ft [5]
Alternative (i) Alternative (ii)	Write $7-\sinh x=5 \cosh x$, then use exponential substitution $7-\frac{1}{2}\left(e^{x}-e^{-x}\right)=\frac{5}{2}\left(e^{x}+e^{-x}\right)$ Then proceed as method above. $\begin{aligned} & (7 \operatorname{sech} x-5)^{2}=\tanh ^{2} x=1-\operatorname{sech}^{2} x \\ & 50 \operatorname{sech} x-70 \operatorname{sech} x+24=0 \\ & 2(5 \operatorname{sech} x-3)(5 \operatorname{sech} x-4)=0 \\ & \operatorname{sech} x=\frac{3}{5} \text { or } \operatorname{sech} x=\frac{4}{5} \\ & x=\ln \left(\frac{1}{3}\right) \text { or } \ln 2 \end{aligned}$	M1 A1 M1 A1 B1ft
Q2 (a)	$\mathbf{b} \times \mathbf{c}=0 \mathbf{i}+5 \mathbf{j}+5 \mathbf{k}$	M1 A1 A1 (3)
(b)	$\text { a. }(\mathbf{b} \times \mathbf{c})=0+5=5$	M1 A1 ft (2)
(c)	Area of triangle $O B C=\frac{1}{2}\|5 \mathbf{j}+5 \mathbf{k}\|=\frac{5}{2} \sqrt{2}$	M1 A1 (2)
(d)	$\text { Volume of tetrahedron }=\frac{1}{6} \times 5=\frac{5}{6}$	B1 ft (1) [8]

Question Number	Scheme	Marks
Q7 (a)	If the lines meet, $-1+3 \lambda=-4+3 \mu$ and $2+4 \lambda=2 \mu$ Solve to give $\lambda=0(\mu=1$ but this need not be seen $)$. Also $1-\lambda=\alpha$ and so $\alpha=1$. $\left\|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2\end{array}\right\|=-6 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ is perpendicular to both lines and hence to the plane The plane has equation $\mathbf{r} . \mathbf{n}=\mathbf{a} . \mathbf{n}$, which is $-6 x+2 y-3 z=-14$, i.e. $-6 x+2 y-3 z+14=0$.	M1 M1 A1 B1 (4) M1 A1 M1 A1 o.a.e. (4)
OR (b)	Alternative scheme Use ($1,-1,2$) and ($\alpha,-4,0$) in equation $a x+b y+c z+d=0$ And third point so three equations, and attempt to solve Obtain $6 x-2 y+3 z=$ $(6 x-2 y+3 z)-14=0$	M1 M1 A1 Al o.a.e. (4)
(c)	$\left(a_{1}-a_{2}\right)=\mathbf{i}-3 \mathbf{j}-2 k$ Use formula $\frac{\left(\mathbf{a}_{\mathbf{1}}-\mathbf{a}_{\mathbf{2}}\right) \cdot \mathbf{n}}{\|\mathbf{n}\|}=\frac{(\mathbf{i}-\mathbf{3} \mathbf{j}-\mathbf{2 k}) \cdot(\mathbf{- 6 i} \mathbf{+} \mathbf{2 j} \mathbf{- 3 k})}{\sqrt{ }(36+4+9)}=\left(\frac{-6}{7}\right)$ Distance is $\frac{6}{7}$	M1 M1 A1 (3) [11]

Question Number	Scheme	Marks
Q8 (a)	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-3 \sin \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=5 \cos \theta$	B1
	so $\mathrm{S}=2 \pi \int 5 \sin \theta \sqrt{(-3 \sin \theta)^{2}+(5 \cos \theta)^{2}} \mathrm{~d} \theta$	M1
	$\therefore S=2 \pi \int 5 \sin \theta \sqrt{9-9 \cos ^{2} \theta+25 \cos ^{2} \theta} \mathrm{~d} \theta$	M1
	Let $c=\cos \theta, \frac{d c}{d \theta}=-\sin \theta$, limits 0 and $\frac{\pi}{2}$ become 1 and 0	M1
	So $S=k \pi \int_{0} \sqrt{16 c^{2}+9} \mathrm{~d} c$, where $k=10$, and α is 1	A1, A1 (6)
	Let $c=\frac{3}{4} \sinh u$. Then $\frac{d c}{d u}=\frac{3}{4} \cosh u$	M1
	So $S=k \pi \int_{2} \sqrt{9 \sinh ^{2} u+9} \frac{3}{4} \cosh u \mathrm{~d} u$	A1
	$=k \pi \int_{2} \frac{9}{4} \cosh ^{2} u \mathrm{~d} u=k \pi \int_{2} \frac{9}{8}(\cosh 2 u+1) \mathrm{d} u$	M1
	$=k \pi \frac{9}{16} \sinh 2 u+\frac{9}{8} u{ }_{0}$	A1
	$=\frac{45 \pi}{4}\left[\frac{20}{9}+\ln 3\right] \quad \text { i.e. } \underline{117}$	B1 (5)
		[11]

Question Number	Scheme	Marks
Q1 (a) (b)	$x=-\mathrm{i}$ is a root (Scored here or in (b)) Factor $(x+i)(x-i)=x^{2}+1$ $\begin{aligned} & \quad x^{4}+6 x^{3}+26 x^{2}+6 x+25=\left(x^{2}+1\right)\left(x^{2}+6 x+25\right) \\ & \text { Solving quadratic: } \\ & x=\frac{-6 \pm \sqrt{36-100}}{2} \end{aligned}$ $x=-3 \pm 4 \mathrm{i}$	1B1 2B1 1M1 1A1 (4) 1M1 1A1 (2) [6]
(a) (b)	1B1 CAO, $x=-i$, maybe seen in (b) $2 \mathrm{~B} 1 x^{2}+1$ CAO 1M1 Getting the three term quadratic 1A1 CAO for correct quadratic 1M1 Solving a three term quadratic to $\mathrm{x}=$ complex, correct formula used 1A1 CAO	

Question Number	Scheme	Marks
Q2	$m^{2}+6 m+10=0 \quad m=\frac{-6 \pm \sqrt{36-40}}{2}=-3 \pm \mathrm{i}$ C.F. $(x=) \mathrm{e}^{-3 t}(A \cos t+B \sin t)$ P.I. $x=k \mathrm{e}^{-4 t}$ $\begin{array}{lc} \frac{\mathrm{d} x}{\mathrm{~d} t}=-4 k \mathrm{e}^{-4 t} & \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=16 k \mathrm{e}^{-4 t} \\ 16 k-24 k+10 k=1 & k=\frac{1}{2} \\ \text { General solution: } & x=\mathrm{e}^{-3 t}(A \cos t+B \sin t)+\frac{1}{2} \mathrm{e}^{-4 t} \end{array}$	1B1 1M1 1A1ft 2B1 2M1 3M1 2A1 $3 A 1 \mathrm{ft}=3 \mathrm{~B} 1 \mathrm{ft}$ [8]
	1B1 CAO (may be implied) 1M1 Correct 'shape' $e^{a t}(A \cos b t+B \sin b t)$ accept alterative (single) variable here. No complex 1 A 1 ft condone their variables 2B1 CAO 2M1 Attempt at both, accept $k e^{-a t}(\mathrm{a}>0)$ derivatives here. 3M1 Linear in k , to $\mathrm{k}=$ 2A1 CAO $3 \mathrm{~A} 1 \mathrm{ft}=3 \mathrm{~B} 1 \mathrm{ft}$ but must be $\mathrm{x}=\mathrm{f}(\mathrm{t})$.	

Question Number	Scheme	Marks
Q4 (a) (b) (c) (d)	$\begin{aligned} & z_{2}=\frac{z_{1}}{1-\mathrm{i}}=\frac{5+2 p \mathrm{i}}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}} \\ & \quad \frac{(5-2 p)+\mathrm{i}(5+2 p)}{2}=\left(\frac{5-2 p}{2}\right),+\mathrm{i}\left(\frac{5+2 p}{2}\right) \\ & \frac{5+2 p}{5-2 p}=4 \quad 5+2 p=20-8 p \quad p=\frac{3}{2} \\ & \left\|z_{2}\right\|=\sqrt{1^{2}+4^{2}}=\sqrt{17}=4.12 \end{aligned}$ For ${ }^{\frac{z_{1}}{z_{2}}}$ For z_{1} and $z_{2}\left(z_{1}=5+3 \mathrm{i}\right.$ and $\left.z_{2}=1+4 \mathrm{i}\right)$	1 M1 1A1,2A1 (3) 1M1 1A1ft (2) 1M1 1A1 (2) 1B1 2B1ft (2) [9]
(a) (c)	Alternative: $5+2 p \mathrm{i}=(1-\mathrm{i})(a+b \mathrm{i}) \quad$ and equate real and imaginary parts $(a+b=5 \text { and } b-a=2 p)$ Alternative: $\left\|z_{2}\right\|=\frac{\left\|z_{1}\right\|}{\sqrt{2}}=\frac{\sqrt{25+(2 p)^{2}}}{\sqrt{2}}$ and substitute value for p . Q4 Notes (a) 1 M 1 A correct method leading to coordinate 1A1 cao 2A1 cao (b) 1 M 1 linear equation in p , their $\operatorname{Im} / \mathrm{Re}=4$ 1A1ft from their (a) (c) 1M1 Pythagoras 1A1 cao (awrt 4.12) (d) 1 B 1 cao 2B1 ft If points unlabelled withhold this mark, relative positions plausible	

Q4 Notes
(a) 1M1 A correct method leading to coordinate

1A1 cao
2A1 cao
(b) 1 M 1 linear equation in p , their $\mathrm{Im} / \mathrm{Re}=4$

1 A 1 ft from their (a)
(c) 1 M 1 Pythagoras

1A1 cao (awrt 4.12)
(d) 1 B 1 cao

2B1ft If points unlabelled withhold this mark, relative positions plausible

Question Number	Scheme		Marks
Q6 (a) (b)			2M1 1A1 3M1 2A1 3A1 (6) 1M1 1A1 2M1 2A1 (4)
(a) (b)	Alternative (special case): Multiply by $\sin \mathrm{x}$ and integrate 'by inspection' Achieve $y \sin x=\int \sin ^{2} x \mathrm{~d} x \text { or } \frac{\mathrm{d}}{\mathrm{~d} x}(y \sin x)=\sin ^{2} x$ Note that other C values are possible, e.g. from $y=\frac{2 x-\sin 2 x}{4 \sin x}+\frac{C}{\sin x}$ Q6 Notes (a) 1 M 1 Integrating factor found, condone sign error 2M1 One side correct 1A1 cao both sides correct 3M1 'RHS' in a form that can be integrated 2A1 'RHS' integrated cao 3A1 cao to $\mathrm{y}=$, general solution (b) 1 M 1 Substitute to find their C 1A1 their C cao 2M1 substitute to find y 2A1 cso	M2 A1	

Question Number	Scheme	Marks
Q7 (a) (b)	Line, positive grad., intercepts $(0,2),(-2,0)$ $\begin{array}{ll} x+2=\frac{1}{x-2} & x^{2}-4=1 \\ x+2=\frac{1}{2-x} & 4-x^{2}=1 \\ x<-\sqrt{3}, & \end{array}$ Curve, branch $\mathrm{x}>2$ Curve, branch $\mathrm{x}<2$ Curve intercept $\left(0, \frac{1}{2}\right)$ Asymptotes $\mathrm{x}=2$ and $\mathrm{y}=0$ $\begin{array}{r} x=\sqrt{5} \\ x=\sqrt{3} \\ \sqrt{3}<x<\sqrt{5} \end{array}$	1B1 2B1 3B1 4B1 1M1 1A1(6) 1M1 1A1 2M1 2A1 1B1ft, 2B1ft (6) [12]
	Special case (a) for $y=\left\|\frac{1}{x+2}\right\|$ allow 2B1 if both branches correct Q7 Notes (a) 1B1 cao intercepts clear 2B1 cao 3B1 cao 4B1 cao $1 / 2$ indicated 1M1 One stated 1A1 both stated (b) $\quad 1 \mathrm{M} 1 \quad$ condone inequality here, seeking one critical value 1A1 finding $1^{\text {st }}$ critical value, exact, but ignore signs 2M1 condone inequality here, seeking second critical value 2A1 finding $2^{\text {nd }}$ critical value, exact, but ignore signs 1 B 1 ft ft their values penalise \leq once only at first occurrence 2B1ft ft their values condone $x \neq 2$.	

Question Number	Scheme	Marks $/$ \%
Q8 (a) (b)	$\begin{aligned} & r \sin \theta=\sin \theta+\sin \theta \cos \theta \\ & \frac{\mathrm{d}(r \sin \theta)}{\mathrm{d} \theta}=\cos \theta+\cos 2 \theta=\cos \theta+\cos ^{2} \theta-\sin ^{2} \theta \\ & 2 \cos ^{2} \theta+\cos \theta-1=0 \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3} \quad r=\frac{3}{2} \quad(*) \\ & \frac{1}{2} \int r^{2} \mathrm{~d} \theta=\frac{1}{2} \int\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta \\ & \int\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta=\left[\theta+2 \sin \theta+\frac{\sin 2 \theta}{4}+\frac{\theta}{2}\right] \\ & {\left[\frac{3 \theta}{2}+2 \sin \theta+\frac{\sin 2 \theta}{4}\right]_{0}^{\frac{\pi}{3}}=\frac{\pi}{2}+\sqrt{3}+\frac{\sqrt{3}}{8} \quad\left(=\frac{\pi}{2}+\frac{9 \sqrt{3}}{8}\right)} \\ & \text { AH }=r \sin \theta=\frac{3}{2} \times \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{4}, \quad P H=2-r \cos \theta=2-\frac{3}{2} \times \frac{1}{2}=\frac{5}{4} \\ & \text { Area of trapezium OAHP: } \\ & \text { Area of R: } \quad\left(2+\frac{5}{4}\right) \frac{3 \sqrt{3}}{4} \quad\left(=\frac{39 \sqrt{3}}{32}\right) \\ & \text { A9 } \quad\left(\frac{\pi}{32}+\frac{9 \sqrt{3}}{16}\right)=\frac{21 \sqrt{3}}{32}-\frac{\pi}{4} \end{aligned}$	1M1 1A1 2M1 2A1 (4) 1 M1 2M1 1A1 3M1 1B1, 2B1 4M1 5M1 2A1 (9)
	Q8 Notes (a) 1 M 1 Finding $\mathrm{r} \sin \theta$ A1 cao 2M1 putting $\frac{\mathrm{d}(r \sin \theta)}{\mathrm{d} \theta}=0$ to $\theta=$, accept substitution of θ to show derivative $=0$ 2A1 cso (b) $1 \mathrm{M} 1^{\frac{1}{2} \int r^{2} d \theta}$ in terms of θ, expanded. 2M1 integrating, at least 1 trig term correctly handled 1A1 cao 3M1 substituting correct limits 1B1 $3 \sqrt{3} / 4$ cao careful, may be on diagram 2B1 $5 / 4$ or $3 / 4$ cao careful, may be on diagram 4M1 Trapezium or $\left(\frac{1}{2} \times \frac{3}{4} \times \frac{3 \sqrt{3}}{4}\right)+\left(\frac{5}{4} \times \frac{3 \sqrt{3}}{4}\right)=\frac{9 \sqrt{3}}{32}+\frac{15 \sqrt{3}}{32}=\frac{39 \sqrt{3}}{32}$ 5M1 Subtracting their integral and their trapezium 2A1 cao	

J une 2009
 6675 Further Pure Mathematics FP2 (legacy)
 Mark Scheme

Question Number	Scheme	Marks
Q1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times \operatorname{arsinh} 2 x \times \frac{2}{\sqrt{ }\left(4 x^{2}+1\right)}$ At $x=\frac{1}{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4}{\sqrt{ } 2} \operatorname{arsinh} 1$ $=2 \sqrt{ } 2 \ln (\sqrt{ } 2+1)$ Alternative $\begin{gathered} \sinh y^{\frac{1}{2}}=2 x \\ \frac{1}{2} y^{-\frac{1}{2}} \cosh y^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \\ \sqrt{ }\left(1+\sinh ^{2} y^{\frac{1}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=4 y^{\frac{1}{2}} \end{gathered}$ At $x=\frac{1}{2}, \sinh y^{\frac{1}{2}}=1$ $\begin{aligned} \sqrt{ }(1+1) \frac{\mathrm{d} y}{\mathrm{~d} x} & =4 \operatorname{arsinh} 1 \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{4}{\sqrt{ } 2} \operatorname{arsinh} 1 \\ & =2 \sqrt{ } 2 \ln (\sqrt{ } 2+1) \end{aligned}$	M1 A1 M1 A1ft A1 (5) [5] M1 A1 M1 Alft A1 (5)
Q2 (a) (b)	$b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 8=a^{2}\left(1-\frac{1}{2}\right) \Rightarrow a=4$ At $S, x=a e=2 \sqrt{ } 2 ; \quad$ at $D, y=2 \sqrt{ } 2 \quad$ two coordinates ($S D S^{\prime} D^{\prime}$ is a square) $A=4 \times \frac{1}{2} \times 2 \sqrt{ } 2 \times 2 \sqrt{ } 2=16$	M1 A1 (2) B1 M1 A1 (3) [5]

J une 2009

6676 Further Pure Mathematics FP3 (legacy)
Mark Scheme

Question Number	Scheme	Marks
Q1	At $\begin{aligned} x=0.1, \quad y_{1} & =0.1(0 \times 0+3)+0=0.3 \\ x=0.2, \quad y_{2} & =0.1\left(0.1 \times 0.3^{2}+3\right)+0.3 \\ & (=0.3009+0.3) \\ & =0.6009 \end{aligned}$ $\begin{aligned} x=0.3, y_{3} & =0.1\left(0.2 \times 0.6009^{2}+3\right)+0.6009 \\ & (=0.307221616 \ldots \ldots .+0.6009) \\ & =0.908(121616 \ldots \ldots) \quad \text { Allow awrt } 0.908 \end{aligned}$	B1 M1 A1 M1 A1 [5]
(a) (b)	$\mathbf{b} \times \mathbf{c}=0 \mathbf{i}+5 \mathbf{j}+5 \mathbf{k}$ $\mathbf{a} .(\mathbf{b} \times \mathbf{c})=\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 0 \\ 5 \\ 5 \end{array}\right)=0+5+0=5$	M1 A1 A1 (3) M1 A1ft
(c) (d)	Area of triangle $O B C=\frac{1}{2}\|5 \mathbf{j}+5 \mathbf{k}\|=\frac{5}{2} \sqrt{2}$ oe Volume of tetrahedron $=\frac{1}{6} \times 5=\frac{5}{6}$	M1 A1 (2)
		(1) [8]

Question Number	Scheme	Marks
Q4 (a) (b)	$\begin{gathered} \frac{d^{2} y}{d x^{2}}+2 \times 2+1=1, \text { and so } \frac{d^{2} y}{d x^{2}}=-4 \text { at } x=0 . \\ y^{\prime \prime \prime}+\left\{\left(1+y^{2}\right) y^{\prime \prime}+2 y\left(y^{\prime}\right)\left(y^{\prime}\right)\right\}+y^{\prime}=2 e^{2 x} \\ y^{\prime \prime \prime}+(1+1)(-4)+2 \times 1(2)(2)+2=2, \text { i.e. } y^{\prime \prime \prime}=0 \\ y=1,+2 x(+\ldots) \\ -\frac{4 x^{2}}{2}+\frac{0 x^{3}}{6}+\frac{40 x^{4}}{24} \\ \left(=-2 x^{2}+\frac{5 x^{4}}{3}\right) \end{gathered}$	
Q5 (a) (b)	$\begin{aligned} & \cos 6 \theta=\operatorname{Re}\left[(\cos \theta+i \sin \theta)^{6}\right] \\ & \begin{array}{c} (\cos \theta+\mathrm{i} \sin \theta)^{6}=c^{6}+6 c^{5} \mathrm{i} s+15 c^{4} \mathrm{i}^{2} s^{2}+20 c^{3} \mathrm{i}^{3} s^{3}+15 c^{2} \mathrm{i}^{4} s^{4}+6 \mathrm{i}^{5} s^{5}+\mathrm{i}^{6} s^{6} \\ \cos 6 \theta=c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6} \\ \cos 6 \theta=c^{6}-15 c^{4}+15 c^{4}\left(1-c^{2}\right)+15 c^{6}\left(1-c^{2}\right)^{2}-\left(1-c^{2}\right)^{2}\left(1-2 c^{2}+c^{4}\right)-\left(1-3 c^{2}+3 c^{4}-c^{6}\right) \\ \cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1 * \end{array} \\ & \cos 6 \theta=\cos 2 \theta \rightarrow 32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1=2 \cos ^{2} \theta-1 \\ & 32 \cos ^{6} \theta-48 \cos ^{4} \theta+16 \cos ^{2} \theta=0 \\ & 16 \cos ^{2} \theta\left(2 \cos ^{4} \theta-3 \cos ^{2} \theta+1\right)=0 \\ & \quad\left(2 \cos ^{2} \theta-1\right)\left(\cos ^{2} \theta-1\right)=0 \\ & \therefore \cos ^{2} \theta=0, \frac{1}{2} \text { or } 1 \text { so } \cos \theta=0, \pm \frac{1}{\sqrt{2}} \text { or } \pm 1 \end{aligned}$ $\text { Uses arccos on at least } 3 \text { different values }$ $\therefore \theta=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4} \text { and } \pi$ Decimals: Allow 0, $0.785,1.57,2.36,3.14$ (awrt) 3correct solutions A1, all correct A1	M1 M1 A1 M1 A1 M1 M1 M1 A1, A1

Question Number	Scheme	Marks
Q8 (a)	$\begin{gathered} \sqrt{ }\left\{(x-3)^{2}+y^{2}\right\}=2 \sqrt{ }\left\{x^{2}+(y-4)^{2}\right\} \text { or }(x-3)^{2}+y^{2}=4\left\{x^{2}+(y-4)^{2}\right\} \\ 3 x^{2}+3 y^{2}+6 x-32 y+55=0 \\ (x+1)^{2}+\left(y-\frac{16}{2}\right)^{2}=\frac{100}{0} \end{gathered}$	M1 A1 M1
	Centre is ($-1,16 / 3$) and radius is $10 / 3$	$\begin{aligned} & \mathrm{A} 1, \mathrm{~A} 1, \mathrm{Al} \\ & \mathrm{cso} \end{aligned}$ (6)
	$w=\frac{12}{z} \rightarrow z=\frac{12}{w}$, and so $\left\|\frac{12}{w}-3\right\|=2\left\|\frac{12}{w}-4 \mathrm{i}\right\|$ substituting for z	M1
	$\|3 w-12\|=2\|4 \mathrm{i} w-12\| \quad$ multiplication by $\|w\|$ or equivalent	M1
	$\|w-4\|=\frac{8}{3}\|w+3 \mathrm{i}\| \quad$ obtains the locus of Q in the required form A2 if completely correct deduct 1 for each error on their a, k or b	M1, A2, 1, 0
		(5)
		[11]

Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} 45 & =2 u+\frac{1}{2} a 2^{2} \end{aligned} \quad \Rightarrow \quad 45=2 u+2 a, ~ 165=6 u+18 a$ eliminating either u or a $u=20 \text { and } a=2.5$	M1 A1 M1 A1 M1 A1 A1
Q2 (a) (b)	$\begin{aligned} & \tan \theta=\frac{p}{2 p} \Rightarrow \theta=26.6^{\circ} \\ & \quad \mathbf{R}=(\mathbf{i}-3 \mathbf{j})+(p \mathbf{i}+2 p \mathbf{j})=(1+p) \mathbf{i}+(-3+2 p) \mathbf{j} \\ & \mathbf{R} \text { is parallel to } \mathbf{i} \Rightarrow(-3+2 p)=0 \\ & \\ & \Rightarrow p=\frac{3}{2} \end{aligned}$	M1 A1 (2) M1 A1 DM1 A1 (4) [6]
Q3 (a) (b)	For A : For B : $\begin{aligned} -\frac{7 m u}{2} & =2 m\left(v_{A}-2 u\right) \\ v_{A} & =\frac{u}{4} \\ \frac{7 m u}{2} & =m\left(v_{B}--3 u\right) \end{aligned}$ $v_{B}=\frac{u}{2}$ OR CLM: $\begin{aligned} 4 m u-3 m u & =2 m \frac{u}{4}+m v_{B} \\ v_{B} & =\frac{u}{2} \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) OR M1 A1 A1 (3) [6]

J une 2009
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
Q4 (a)	 Taking moments about A : $\begin{aligned} & 3 g \times 0.75=\frac{T}{\sqrt{2}} \times 0.5 \\ & T=3 \sqrt{2} g \times \frac{7.5}{5}=\frac{9 \sqrt{2} g}{2}(=62.4 \mathrm{~N}) \end{aligned}$ $\begin{aligned} & \leftarrow \pm H=\frac{T}{\sqrt{2}}\left(=\frac{9 g}{2} \approx 44.1 N\right) \\ & \uparrow \pm V+\frac{T}{\sqrt{2}}=3 g \quad\left(\Rightarrow V=3 g-\frac{9 g}{2}=\frac{-3 g}{2} \approx-14.7 \mathrm{~N}\right) \\ & \Rightarrow\|R\|=\sqrt{81+9} \times \frac{g}{2} \approx 46.5(N) \end{aligned}$ at angle $\tan ^{-1} \frac{1}{3}=18.4^{\circ}$ (0.322 radians) below the line of BA 161.6° (2.82 radians) below the line of AB (108.4° or 1.89 radians to upward vertical)	M1A1A1 A1 (4) B1 M1A1 M1A1 M1A1
Q5 (a)	Ratio of areas triangle:sign:rectangle $=1: 5: 6$ (1800:9000:10800) Centre of mass of the triangle is 20 cm down from $A D$ (seen or implied) $\begin{aligned} & \Rightarrow 6 \times 45-1 \times 20=5 \times \bar{y} \\ & \quad \bar{y}=50 \mathrm{~cm} \end{aligned}$ Distance of centre of mass from $A B$ is 60 cm $\begin{aligned} & \text { Required angle is } \tan ^{-1} \frac{60}{50} \\ &=50.2^{\circ}(0.876 \text { rads }) \end{aligned}$ (their values)	B1 B1 M1A1 A1 (5) B1 M1A1ft A1 (4) [9]

Question Number	Scheme	Marks
Q8 (a)		
	A B C $3 m$	
	Conservation of momentum: $4 m u-3 m v=3 m k v$	M1A1
	Impact law: $k v=\frac{3}{4}(u+v)$	M1A1
	Eliminate k: $\quad 4 m u-3 m v=3 m \times \frac{3}{4}(u+v)$	DM1
	$u=3 v$ (Answer given)	A1
		(6)
(b)	$k v=\frac{3}{4}(3 v+v), k=3$	M1, A1
		(2)
(c)	Impact law: $(k v+2 v) e=v_{C}-v_{B} \quad\left(5 v e=v_{C}-v_{B}\right)$	B1
	Conservation of momentum : $3 \times k v-1 \times 2 v=3 v_{B}+v_{c} \quad\left(7 v=3 v_{B}+v_{c}\right)$	B1
	Eliminate $v_{\mathrm{C}}: v_{B}=\frac{v}{4}(7-5 e)>0$ hence no further collision with A.	M1 A1 (4)
		[12]

J une 2009
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b)	Resolving vertically: $2 T \cos \theta=W$ Hooke's Law: $\begin{aligned} & T=\frac{80 \times 3.5}{4} \\ & W=84 \mathrm{~N} \end{aligned}$ $\mathrm{EPE}=2 \times \frac{80 \times 3.5^{2}}{2 \times 4},=245 \quad($ or awrt 245$)$ (alternative $\frac{80 \times 7^{2}}{16}=245$)	M1A2,1,0 M1A1 A1 M1A1ft,A1
Q2 (a) (b)	Object Mass c of m above base Cone m $2 h+3 h$ Base $3 m$ h Marker $4 m$ $d$$m \times 5 h+3 m \times h=4 m \times d$$d=2 h$	B1(ratio masses) B1(distances) M1A1ft A1 M1A1ft A1

Question Number	Scheme	Marks
Q3 (a) (b)	$\begin{gathered} \leftrightarrow \quad R \sin \theta=m x \omega^{2} \\ R \times \frac{x}{r}=m x \times \frac{3 g}{2 r} \\ R=\frac{3 m g}{2} \\ \underline{\downarrow} \quad R \cos \theta=m g \\ \\ \frac{3 m g}{2} \times \frac{d}{r}=m g \\ d=\frac{2}{3} r \end{gathered}$	M1 A1 M1 A1 M1 A1 M1 A1
Q4 (a) (b)	$\begin{aligned} & \text { Volume }=\int_{\frac{1}{4}}^{1} \pi y^{2} d x=\int_{\frac{1}{4}}^{1} \pi \frac{1}{x^{4}} d x \\ & =\left[\pi \times \frac{-1}{3 x^{3}}\right]_{\frac{1}{4}}^{1} \\ & =\pi\left(\frac{-1}{3}+\frac{64}{3}\right)=21 \pi \\ & 21 \pi \rho \bar{x}=\rho \int \pi y^{2} x d x=\rho \int \pi \frac{1}{x^{4}} x d x \end{aligned} \begin{aligned} & 21 \pi \bar{x}=\pi\left[\frac{-1}{2 x^{2}}\right]_{\frac{1}{4}}^{1} \\ & \bar{x}=\frac{1}{21}\left(\frac{-1}{2}+\frac{16}{2}\right)=\frac{5}{14} \text { or awrt } 0.36 \\ & \bar{y}=0 \text { by symmetry } \end{aligned}$	M1A1 Alft A1 M1A1 Alft A1 B1

Question Number	Scheme	Marks
Q5 (a)	Energy: $\left(\frac{1}{2} m u^{2}+\right) m g l\left(\cos \theta-\frac{1}{4}\right)=\frac{1}{2} m v^{2}$	M1A1
	$T-m g \cos \theta=\frac{m v^{2}}{l}$	M1A1
	$\begin{aligned} & \text { Eliminate } v^{2} \text { : } \\ & T=m g \cos \theta+\frac{1}{l}\left(2 m g l\left(\cos \theta-\frac{1}{4}\right)\right) \end{aligned}$	M1
	$T=3 m g \cos \theta-\frac{m g}{2}$	A1
(b)	$\begin{aligned} \theta=60^{\circ} & \Rightarrow m v^{2}=2 m g l\left(\frac{1}{2}-\frac{1}{4}\right) \\ & \Rightarrow v^{2}=\frac{g l}{2} \end{aligned}$	M1
	$\downarrow$$2 /$ vertical motion under gravity: 16 $\imath 0=\left(v \cos 30^{\circ}\right)^{2}-2 g s$	M1
	$0=\frac{g l}{2} \times \frac{3}{4}-2 g s \Rightarrow s=\frac{3 l}{16}$	A1
	Distance below $\mathrm{A}=\frac{l}{2}-\frac{3 l}{16}=\frac{5 l}{16}$	M1A1 [11]
Alternative for end of (b) using energy		M1A1 M1 A1

J une 2009
6680 Mechanics M4
Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} & \text { CLM along plane: } v \cos 30^{\circ}=u \cos 45^{\circ} \\ & v=u \sqrt{\frac{2}{3}} \\ & \text { Fraction of KE Lost }=\frac{\frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}}{\frac{1}{2} m u^{2}}=\frac{\frac{1}{2} m u^{2}-\frac{1}{2} m \frac{2}{3} u^{2}}{\frac{1}{2} m u^{2}}=\frac{1}{3} \end{aligned}$	M1 A1 A1 M1 M1 A1 [6]
Q2	$\begin{aligned} & -m g-m k v^{2}=m a \\ & -\left(g+k v^{2}\right)=v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & \pm \int_{0}^{X} \mathrm{~d} x=\int_{\sqrt{\frac{g}{k}}}^{\frac{1}{2} \sqrt{\frac{g}{k}}} \frac{-v \mathrm{~d} v}{\left(g+k v^{2}\right)} \\ & X=\frac{1}{2 k}\left[\ln \left(g+k v^{2}\right)\right]_{\frac{1}{2}}^{\sqrt{\frac{g}{k}} \frac{g}{k}} \\ & \quad=\frac{1}{2 k}\left(\ln 2 g-\ln \frac{5 g}{4}\right) \\ & \quad=\frac{1}{2 k} \ln \frac{8}{5} \end{aligned}$	M1 A1 M1 DM1 A1 (both previous) M1 A1 M1 A1

| Question
 Number |
| ---: | :--- |
| Q3 (a) |
| (c) |

J une 2009
6681 Mechanics M5

Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{gathered} \pm(8 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}) \\ ((4 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k})+(8 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k})) \cdot(8 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k})=\frac{1}{2} 3 v^{2} \\ 12=v \\ \mathbf{v}=\frac{12}{\sqrt{8^{2}+(-4)^{2}+8^{2}}}(8 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}) \\ \mathbf{v}=(8 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}) \mathrm{ms}^{-1} \end{gathered}$	B1 M1 A1 f.t. A1 M1 DM1 A1
Q2	$\begin{gathered} \text { C.F. is } \mathbf{r}=\mathbf{A} \cos 2 t+\mathbf{B} \sin 2 t \\ \text { P.I. is } \mathbf{r}=\mathbf{p} e^{2 t} \\ \dot{\mathbf{r}}=2 \mathbf{p} e^{2 t} \\ \ddot{\mathbf{r}}=4 \mathbf{p} e^{2 t} \\ 4 \mathbf{p} e^{2 t}+4 \mathbf{p} e^{2 t}=\mathbf{j} e^{2 t} \\ \text { (PI is) } \quad \mathbf{r}=\frac{1}{8} \mathbf{j} e^{2 t} \\ \mathrm{GS} \text { is } \mathbf{r}=\mathbf{A} \cos 2 t+\mathbf{B} \sin 2 t+\frac{1}{8} \mathbf{j} e^{2 t} \\ t=0, \mathbf{r}=\mathbf{i}+\mathbf{j} \Rightarrow \mathbf{i}+\mathbf{j}=\mathbf{A}+\frac{1}{8} \mathbf{j} \Rightarrow \mathbf{i}+\frac{7}{8} \mathbf{j}=\mathbf{A} \\ \dot{\mathbf{r}}=-2 \mathbf{A} \sin 2 t+2 \mathbf{B} \cos 2 t+\frac{1}{4} \mathbf{j} e^{2 t} \\ t=0, \dot{\mathbf{r}}=2 \mathbf{i} \Rightarrow 2 \mathbf{i}=2 \mathbf{B}+\frac{1}{4} \mathbf{j} \Rightarrow \mathbf{i}-\frac{1}{8} \mathbf{j}=\mathbf{B} \\ \mathbf{r}=\left(\mathbf{i}+\frac{7}{8} \mathbf{j}\right) \cos 2 t+\left(\mathbf{i}-\frac{1}{8} \mathbf{j}\right) \sin 2 t+\frac{1}{8} \mathbf{j} e^{2 t} \end{gathered}$	B1 B1 B1 ft M1 A1 A1 ft DM1 A1 M1A1 A1

Question Number	Scheme	Marks
Q6 (a)	$\begin{aligned} & \frac{1}{3} 2 m(4 a)^{2}+\frac{1}{12} 4 m a^{2}+4 m(4 a)^{2} \\ & =\frac{32}{3} m a^{2}+\frac{1}{3} m a^{2}+64 m a^{2} \\ & =75 m a^{2} * \end{aligned}$	B1 M1 A1 A1 (4)
	$\begin{aligned} & \frac{1}{2} 75 m a^{2} \omega^{2}=2 m g 2 a(\cos \theta-\cos \alpha)+4 m g 4 a(\cos \theta-\cos \alpha) \\ & a \omega^{2}=\frac{8}{15} g\left(\cos \theta-\frac{24}{25}\right)=\frac{8}{375} g(25 \cos \theta-24) \end{aligned}$	M1 A2 A1
	$\begin{aligned} X & -6 m g \cos \theta=2 m 2 a \omega^{2}+4 m 4 a \omega^{2}=20 m a \omega^{2} \\ X & =6 m g \cos \theta+20 m \frac{8}{375} g(25 \cos \theta-24) \\ & =\frac{50 m g \cos \theta}{3}-\frac{256 m g}{25} \end{aligned}$	M1 A2 D M1 A1 (9)
(c)	$-2 m g 2 a \sin \theta-4 m g 4 a \sin \theta=75 m a^{2} \ddot{\theta}$	M1 A1
	$\begin{aligned} \ddot{\theta} & =-\frac{4 g}{15 a} \sin \theta \\ & \approx-\frac{4 g}{15 a} \theta, \mathrm{SHM} \end{aligned}$	A1 M1
	$\text { Time }=\frac{1}{4} 2 \pi \sqrt{\frac{15 a}{4 g}}$	M1
	$=\frac{\pi}{4} \sqrt{\frac{15 a}{g}}$	A1 (6)
		[19]

Mark Scheme

Question Number	Scheme	Marks
Q3 (a) (b)	$1(\mathrm{~cm})$ cao $10 \mathrm{~cm}^{2}$ represents 15 $10 / 15 \mathrm{~cm}^{2} \text { represents } 1 \quad \text { or } 1 \mathrm{~cm}^{2} \text { represents } 1.5$ Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $\mathrm{x} \frac{2}{3}$ or $\div 1.5$ $\text { height }=6(\mathrm{~cm})$	B1 M1 A1
Notes	If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: $\mathrm{f} / \mathrm{cw}=15 / 6=2.5$ represented by 5 so factor x 2 award M1 So $\mathrm{f} / \mathrm{cw}=9 / 3=3$ represented by $3 \times 2=6$. Award A1.	[3]

Question Number	Scheme	Marks
Q4 (a)	$\begin{align*} Q_{2} & =17+\left(\frac{60-58}{29}\right) \times 2 \\ & =17.1(17.2 \text { if use } 60.5) \tag{or17.2} \end{align*}$	M1 A1
	$\sum f x=2055.5 \quad \sum f x^{2}=36500.25 \quad$ Exact answers can be seen below or implied	B1 B1
	Evidence of attempt to use midpoints with at least one correct	M1
	Mean $=17.129 \ldots$ awrt 17.1	B1
	$\sigma=\sqrt{\frac{36500.25}{120}-\left(\frac{2055.5}{120}\right)^{2}}$	M1
	$=3.28$ (s=3.294) awrt 3.3	A1 (6)
(c)	$\frac{3(17.129-17.1379 \ldots)}{3.28}=-0.00802$ Accept 0 or awrt 0.0	M1 A1
	3.28	
	No skew/ slight skew	B1 (3)
(d)	The skewness is very small. Possible.	B1 B1dep
Notes		[13]
	4(a) Statement of $17+\frac{\text { freq into class }}{\text { class freq }} \times \mathrm{cw}$ and attempt to sub or $\frac{m-17}{19-17}=\frac{60(.5)-58}{87-58}$ or equivalent award M1 $\mathrm{cw}=2$ or 3 required for M1. 17.2 from $\mathrm{cw}=3$ award A0. 4(b) Correct $\sum \mathrm{f} x$ and $\sum \mathrm{f} x^{2}$ can be seen in working for both B1s Midpoints seen in table and used in calculation award M1 Require complete correct formula including use of square root and attempt to sub for M1. No formula stated then numbers as above or follow from (b) for M1 $\left(\sum f x\right)^{2}, \sum(f x)^{2}$ or $\sum f^{2} x$ used instead of $\sum f x^{2}$ in sd award M0 Correct answers only with no working award $2 / 2$ and $6 / 6$ 4(c) Sub in their values into given formula for M1 4(d) No skew / slight skew / 'Distribution is almost symmetrical' / 'Mean approximately equal to median' or equivalent award first B1. Don't award second B1 if this is not the case. Second statement should imply 'Greg's suggestion that a normal distribution is suitable is possible' for second B1 dep. If B0 awarded for comment in (c).and (d) incorrect, allow follow through from the comment in (c).	

Question Number	Scheme	Marks
Q5 (a) (b) (c)	$\begin{aligned} b & =\frac{59.99}{33.381} \\ & =1.79713 \ldots . \\ \mathrm{a} & =32.7-1.79713 \ldots \times 51.83 \\ & =-60.44525 \ldots \\ w & =-60.445251 \ldots+1.79713 \ldots l \\ w & =-60.445251 \ldots+1.79713 \ldots \times 60 \\ & =47.3825 \ldots \end{aligned}$ $=1.79713 \ldots . . \quad 1.8 \text { or } \quad \text { awrt } 1.80$ $=-60.44525 \ldots \quad \text { awrt }-60$ l and w required and awrt 2 sf In range 47.3-47.6 inclusive It is extrapolating so (may be) unreliable.	M1 A1 M1 A1 Alft M1 A1 (2) B1, B1dep (2) [9]
Notes	5(a) Special case $\begin{aligned} & b=\frac{59.99}{120.1}=0.4995 \mathrm{M} 0 \mathrm{~A} 0 \\ & \mathrm{a}=32.7-0.4995 \times 51.83 \mathrm{M} 1 \mathrm{~A} 1 \\ & w=6.8+0.50 l \text { at least } 2 \text { sf required for } \mathrm{A} 1 \end{aligned}$ 5(b) Substitute into their answer for (a) for M1 5(c) 'Outside the range on the table' or equivalent award first B1	

Question Number	Scheme	Marks
Q6 (a) ${ }^{(b)}$	0 1 2 3 $3 a$ $2 a$ a b	B1 (1)
	$3 a+2 a+a+b=1$ or equivalent, using Sum of probabilities $=1$ $2 a+2 a+3 b=1.6$ or equivalent, using $\mathrm{E}(X)=1.6$ $14 a=1.4$ Attempt to solve $a=0.1$ cao $b=0.4$ cao	M1 M1 M1dep B1 B1
	$\begin{gather*} \mathrm{P}(0.5<x<3)=\mathrm{P}(1)+\mathrm{P}(2) \tag{5}\\ =0.2+0.1 \\ =0.3 \end{gather*}$ 3a or their $2 a+$ their a Require $0<3 a<1$ to award follow through	M1 A1 ft
	$\begin{aligned} \mathrm{E}(3 X-2) & =3 \mathrm{E}(X)-2 \\ & =3 \times 1.6-2 \\ & =2.8 \end{aligned}$	(2) M1 A1
	$\begin{aligned} \mathrm{E}\left(X^{2}\right) & =1 \times 0.2+4 \times 0.1+9 \times 0.4(=4.2) \\ \operatorname{Var}(X) & =" 4.2 "-1.6^{2} \\ & =1.64 \quad * * \text { given answer** } \end{aligned}$	M1 M1 A1
	$\begin{gathered} \operatorname{Var}(3 X-2)=9 \operatorname{Var}(X) \\ =14.76 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		$\begin{array}{r} (2) \\ {[15]} \\ \hline \end{array}$
Notes		
	6(a) Condone a clearly stated in text but not put in table. 6(b) Must be attempting to solve 2 different equations so third M dependent upon first two Ms being awarded. Correct answers seen with no working B1B1 only, $2 / 5$ Correctly verified values can be awarded M1 for correctly verifying sum of probabilities $=1$, M1 for using $\mathrm{E}(X)=1.6 \mathrm{M} 0$ as no attempt to solve and B 1 B 1 if answers correct. 6(d) 2.8 only award M1A1 6(e) Award first M for at least two non-zero terms correct. Allow first M for correct expression with a and b e.g. $\mathrm{E}\left(X^{2}\right)=6 a+9 b$ Given answer so award final A1 for correct solution. 6(f) 14.76 only award M1A1	

Question Number	Scheme	Marks
Q7(a) (i) ${ }^{(i i)}$ (b)	$\mathrm{P}(A \cup B)=a+b$ cao	B1
	$\mathrm{P}(A \cup B)=a+b-a b$ or equivalent	B1 (2)
	$\begin{aligned} \mathrm{P}(R \cup Q) & =0.15+0.35 \\ & =0.5 \end{aligned}$	B1
	$\begin{gathered} \mathrm{P}(R \cap Q)=\mathrm{P}(R \mid Q) \times \mathrm{P}(Q) \\ =0.1 \times 0.35 \end{gathered}$	M1
	$=0.035 \sim \mathbf{0 . 0 3 5}$	A1
	$\mathrm{P}(R \cup Q)=\mathrm{P}(R)+\mathrm{P}(Q)-\mathrm{P}(R \cap Q) \quad$ OR $\quad \mathrm{P}(R)=\mathrm{P}\left(R \cap Q^{\prime}\right)+\mathrm{P}(R \cap Q)$	M1
	$\begin{array}{rlr} 0.5 & =\mathrm{P}(R)+0.35-0.035 & \\ \mathrm{P}(R) & =0.185 & \\ & =0.15+0.035 \\ & 0.185 \end{array}$	A1
		$\begin{aligned} & (2) \\ & {[7]} \end{aligned}$
Notes		
	7(a) (i) Accept $a+b-0$ for B1 Special Case If answers to (i) and (ii) are (i) $\mathrm{P}(A)+\mathrm{P}(B)$ and (ii) $\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B)$ award B0B1 7(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded.	

Question Number	Scheme	Marks
Q8 (a)	Let the random variable X be the lifetime in hours of bulb $\begin{aligned} \mathrm{P}(X<830) & =\mathrm{P}\left(Z<\frac{ \pm(830-850)}{50}\right) & & \text { Standardising with } 850 \text { and } 50 \\ & =\mathrm{P}(Z<-0.4) & & \\ & =1-\mathrm{P}(Z<0.4) & & \text { Using 1-(probability }>0.5) \\ & =1-0.6554 & & \\ & =0.3446 \text { or } 0.344578 \text { by calculator } & & \text { awrt } 0.345 \end{aligned}$	M1 M1 A1
	$\begin{array}{lr} 0.3446 \times 500 & \text { Their (a) } \times 500 \\ =172.3 & \text { Accept } 172.3 \text { or } 172 \text { or } 173 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ (2)
	Standardise with 860 and σ and equate to z value $\frac{ \pm(818-860)}{\sigma}=z$ value $\frac{818-860}{\sigma}=-0.84(16)$ or $\frac{860-818}{\sigma}=0.84(16)$ or $\frac{902-860}{\sigma}=0.84(16)$ or equiv.	M1 A1
	$\sigma=49.9 \quad 50 \text { or awrt } 49.9$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { A1 } \end{aligned}$
	Company Y as the mean is greater for Y. both They have (approximately) the same standard deviation or sd	$\begin{aligned} & \text { B1 (4) } \\ & \text { B1 } \end{aligned}$
		$\begin{array}{r} (2) \\ {[11]} \end{array}$
Notes		
	8(a) If $1-z$ used e.g. 1-0.4=0.6 then award second M0 8(c) M1 can be implied by correct line 2 A1 for completely correct statement or equivalent. Award B1 if $0.8416(2)$ seen Do not award final A1 if any errors in solution e.g. negative sign lost. 8(d) Must use statistical terms as underlined.	

Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b)	$\begin{array}{rc} \hline[X \sim \mathrm{~B}(30,0.15)] & \\ \mathrm{P}(X \leq 6),=0.8474 & \text { awrt } 0.847 \\ Y \sim \mathrm{~B}(60,0.15) \approx \operatorname{Po}(9) & \text { for using } \operatorname{Po}(9) \\ \mathrm{P}(Y \leq 12),=0.8758 & \text { awrt } 0.876 \end{array}$ [N.B. normal approximation gives 0.897 , exact binomial gives 0.894]	M1, A1 (2) B1 M1, A1 (3)
(a) (b)	M1 for a correct probability statement $\mathrm{P}(X \leq 6)$ or $\mathrm{P}(X<7)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\mathrm{P}(X=2)+\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74% B1 may be implied by using $\operatorname{Po}(9)$. Common incorrect answer which implies this is 0.9261 M1 for a correct probability statement $\mathrm{P}(X \leq 12)$ or $\mathrm{P}(X<13)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\ldots+\mathrm{P}(X=12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution. Condone $\mathrm{P}(X \leq 13)=0.8758$ for B1 M1 A1 Correct answer gets B1 M1 A1 Use of normal or exact binomial get B0 M0 A0	

Question Number	Scheme	Marks
Q2	$\mathrm{H}_{0}: \lambda=2.5($ or $\lambda=5) \quad \mathrm{H} 1: \lambda<2.5$ (or $\left.\lambda<5\right) \quad \lambda$ or μ $X \sim \operatorname{Po}(5)$ $\mathrm{P}(X \leq 1)=0.0404 \quad$ or $\quad \mathrm{CR} X \leq 1$ $[0.0404<0.05]$ this is significant or reject H_{0} or it is in the critical region There is evidence of a decrease in the (mean) number/rate of deformed blood cells	B1B1 M1 A1 M1 A1 (6) $[6]$
	$1^{\text {st }} \mathrm{B} 1$ for H_{0} must use lambda or mu; 5 or 2.5. $2^{\text {nd }} \mathrm{B} 1$ for H_{1} must use lambda or mu; 5 or 2.5 $1^{\text {st }} \mathrm{M} 1$ for use of $\mathrm{Po}(5)$ may be implied by probability (must be used not just seen) eg. $\mathrm{P}(X=1)=0.0404-\ldots$ would score M1 A0 $1^{\text {st }} \mathrm{A} 1$ for 0.0404 seen or correct CR $2^{\text {nd }}$ M1 for a correct statement (this may be contextual) comparing their probability and 0.05 (or comparing 1 with their critical region). Do not allow conflicting statements. $2^{\text {nd }}$ A1 is not a follow through. Need the word decrease, number or rate and deformed blood cells for contextual mark. If they have used \neq in H_{1} they could get B1 B0 M1 A1 M1A0 mark as above except they gain the $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(X \leq 1)=0.0404$ or $\mathrm{CR} X \leq 0$ $2^{\text {nd }}$ M1 for a correct statement (this may be contextual) comparing their probability and 0.025 (or comparing 1 with their critical region) They may compare with 0.95 (one tail method) or 0.975 (one tail method) Probability is 0.9596 .	

Question Number	Scheme	Marks
Q3 (a) (b) (c)	A statistic is a function of $X_{1}, X_{2}, \ldots X_{n}$ that does not contain any unknown parameters The probability distribution of Y or the distribution of all possible values of Y (o.e.) Identify (ii) as not a statistic Since it contains unknown parameters μ and σ.	(1) B1 dB1 (2) [5]
(a) (b) (c) (c)	Examples of other acceptable wording: B1 e.g. is a function of the sample or the data / is a quantity calculated from the sample or the data / is a random variable calculated from the sample or the data B1 e.g. does not contain any unknown parameters/quantities contains only known parameters/quantities only contains values of the sample Y is a function of $X_{1}, X_{2}, \ldots X_{n}$ that does not contain any unknown parameters is a function of the values of a sample with no unknowns is a function of the sample values is a function of all the data values A random variable calculated from the sample A random variable consisting of any function A function of a value of the sample A function of the sample which contains no other values/ parameters Examples of other acceptable wording All possible values of the statistic together with their associated probabilities $1^{\text {st }} \mathrm{B} 1$ for selecting only (ii) $2^{\text {nd }}$ B1 for a reason. This is dependent upon the first B1. Need to mention at least one of mu (mean) or sigma (standard deviation or variance) or unknown parameters. Examples since it contains mu B1 since it contains sigma B1 since it contains unknown parameters/quantities B1 since it contains unknowns B0	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q4 (a) \& \(X \sim \mathrm{~B}(20,0.3)\)
\begin{tabular}{ll}
\(\mathrm{P}(X \leq 9)=0.9520 \quad\) so \& \(\mathrm{P}(X \leq 2)=0.0355\) \\
Therefore the critical region is \(\quad\{X \leq 2\} \cup\{X \geq 10\}\)
\end{tabular}
\begin{tabular}{ll}
\\
\(0.0355+0.0480=0.0835\)
\end{tabular}
\begin{tabular}{ll}
11 is in the critical region \\
there is evidence of a change/ increase \\
single tins
\end{tabular} \& \begin{tabular}{ll}
M1 \& \\
A1 \& \\
A1 \& \\
A1A1 \& (5) \\
B1 \& (1) \\
B1ft \& \\
B1ft \& (2) \\
\& [8]
\end{tabular} \\
\hline (a)

(b)

(c) \& | M1 for $B(20,0.3)$ seen or used |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for 0.0355 |
| $2^{\text {nd }} \mathrm{A} 1$ for 0.048 |
| $3^{\text {rd }} \mathrm{A} 1$ for $(X) \leq 2$ or $(X)<3$ or [0,2] They get A0 if they write $\mathrm{P}(X \leq 2 / X<3)$ |
| $4^{\text {th }} \mathrm{A} 1(X) \geq 10$ or $(X)>9$ or [10,20] They get A0 if they write $\mathrm{P}(X \geq 10 / X>9)$ |
| $\mathbf{1 0} \leq X \leq 2$ etc is accepted |
| To describe the critical regions they can use any letter or no letter at all. It does not have to be X. |
| B1 correct answer only |
| $1^{\text {st }} \mathrm{B} 1$ for a correct statement about 11 and their critical region. |
| $2^{\text {nd }} \mathrm{B} 1$ for a correct comment in context consistent with their CR and the value 11 |
| Alternative solution |
| $1^{\text {st }} \mathrm{B} 0 P(X \geq 11)=1-0.9829=0.0171$ since no comment about the critical region |
| $2^{\text {nd }}$ B1 a correct contextual statement. | \&

\hline
\end{tabular}

Question Number	Scheme ${ }^{\text {a }}$
Q5 $\begin{array}{r}\text { (a) } \\ \\ \\ \text { (b) }\end{array}$	
(a) SC (b)	B1 for seeing or using $\operatorname{Po}(6)$ M1 for $1-\mathrm{P}(X \leq 3)$ or $1-[\mathrm{P}(X=0)+\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)]$ A1 awrt 0.849 If $\mathrm{B}(2000,0.003)$ is used and leads to awrt 0.849 allow B0 M1 A1 If no distribution indicated awrt 0.8488 scores B1M1A1 but any other awrt 0.849 scores B0M1A1 $1^{\text {st }}$ M1 for identifying the normal approximation $1^{\text {st }} \mathrm{A} 1$ for [mean $\left.=24\right]$ and $[\mathrm{sd}=\sqrt{24}$ or var $=24]$ These first two marks may be given if the following are seen in the standardisation formula : 24 $\sqrt{24} \text { or awrt } 4.90$ $2^{\text {nd }} \mathrm{M} 1$ for attempting a continuity correction ($20 / 28 \pm 0.5$ is acceptable) $3^{\text {rd }} \mathrm{M} 1$ for standardising using their mean and their standard deviation. $2^{\text {nd }} \mathrm{A} 1$ correct z value awrt ± 0.71 or this may be awarded if see $\frac{20.5-24}{\sqrt{24}}$ or $\frac{27.5-24}{\sqrt{24}}$ $4^{\text {th }}$ M1 for $1-$ a probability from tables (must have an answer of <0.5) $3^{\text {rd }} \mathrm{A} 1$ answer awrt 3 sig fig in range $0.237-0.239$

Question Number	Scheme	Marks
Q7 $\begin{array}{rr}\text { (a) } \\ & (b) \\ & \text { (c) } \\ \\ \\ \\ \end{array}$	$\mathrm{E}(X)=2$ (by symmetry)	B1 (1)
	$0 \leq x<2$, gradient $=\frac{\frac{1}{2}}{2}=\frac{1}{4}$ and equation is $y=\frac{1}{4} x$ so $a=\frac{1}{4}$	B1
	$b-\frac{1}{4} x$ passes through (4,0) so $b=1$	B1 (2)
	$\mathrm{E}\left(X^{2}\right)=\int^{2}\left(\frac{1}{4} x^{3}\right) \mathrm{d} x+\int^{4}\left(x^{2}-\frac{1}{4} x^{3}\right) \mathrm{d} x$	M1M1
	$=\left[\frac{x^{4}}{16}\right]_{0}^{2}+\left[\frac{x^{3}}{3}-\frac{x^{4}}{16}\right]_{2}^{4}$	A1
	$64-8 \quad 256-16$	M1A1
	$\begin{equation*} \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\frac{14}{3}-2^{2},=\frac{2}{3} \quad\left(\text { so } \sigma=\sqrt{\frac{2}{3}}=0.816\right) \tag{*} \end{equation*}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { Alcso } \tag{7} \end{array}$
	$\mathrm{P}(X \leq q)=\int_{0}^{q} \frac{1}{4} x \mathrm{~d} x=\frac{1}{4}, \quad \frac{q^{2}}{2}=1 \text { so } q=\sqrt{2}=1.414 \quad \text { awrt } 1.41$	M1A1,A1 (3)
	2- $\sigma=1.184$ so $2-\sigma, 2+\sigma$ is wider than IQR , therefore greater than 0.5	$\begin{array}{\|cc} \hline \text { M1, A1 } & (2) \\ & {[15]} \\ \hline \end{array}$

(a) B1 cao
(b) B 1 for value of a. B 1 for value of b
(c) $1^{\text {st }}$ M1 for attempt at $\int a x^{3}$ using their a. For attempt they need x^{4}. Ignore limits.
$2^{\text {nd }}$ M1 for attempt at $\int b x^{2}-a x^{3}$ use their a and b. For attempt need to have either x^{3} or x^{4}. Ignore limits
$1^{\text {st }} \mathrm{A} 1$ correct integration for both parts
$3^{\text {rd }}$ M1 for use of the correct limits on each part
$2^{\text {nd }} \mathrm{A} 1$ for either getting 1 and $3 \frac{2}{3}$ or awrt 3.67 somewhere or $4 \frac{2}{3}$ or awrt 4.67
$4^{\text {th }}$ M1 for use of $\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$ must add both parts for $\mathrm{E}\left(X^{2}\right)$ and only have subtracted the mean 2 once. You must see this working
(d)
$3^{\text {rd }} \mathrm{A} 1 \sigma=\sqrt{\frac{2}{3}}$ or $\sqrt{0.66667}$ or better with no incorrect working seen.
M1 for attempting to find LQ , integral of either part of $\mathrm{f}(x)$ with their ' a ' and ' b ' $=0.25$
Or their $\mathrm{F}(x)=0.25$ i.e. $\frac{a x^{2}}{2}=0.25$ or $b x-\frac{a x^{2}}{2}+4 a-2 b=0.25$ with their a and b
If they add both parts of their $\mathrm{F}(x)$, then they will get M 0 .
$1^{\text {st }} \mathrm{A} 1$ for a correct equation/expression using their ' a '
(e) $2^{\text {nd }} \mathrm{A} 1$ for $\sqrt{2}$ or awrt 1.41

M1 for a reason based on their quartiles

- Possible reasons are $\mathrm{P}(2-\sigma<X<2+\sigma)=0.6498$ allow awrt 0.65
- $1.184<\operatorname{LQ}(1.414)$

A1 for correct answer >0.5
NB you must check the reason and award the method mark. A correct answer without a correct reason gets M0 A0

Question Number	Scheme	Marks
Q8 (a)	$X \sim \operatorname{Po}(2) \quad \mathrm{P}(X=4)=\frac{\mathrm{e}^{-2} \times 2^{4}}{4!}=0.0902 \quad \text { awrt } 0.09$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{align*} & Y \sim \operatorname{Po}(8) \tag{3}\\ & \mathrm{P}(Y>10)=1-\mathrm{P}(Y \leq 10)=1-0.8159=0.18411 \ldots \tag{awrt 0.184} \end{align*}$	$\begin{aligned} & \text { B1 } \\ & \text { M1A1 } \end{aligned}$
(c)	$F=$ no. of faults in a piece of cloth of length $x \quad F \sim \operatorname{Po}\left(x \times \frac{2}{15}\right)$	
	$\begin{gathered} \mathrm{e}^{-\frac{2 x}{15}}=0.80 \\ \mathrm{e}^{-\frac{2}{15} \times 1.65}=0.8025 \ldots, \quad \mathrm{e}^{-\frac{2}{15} \times 1.75}=0.791 \ldots \end{gathered}$	M1A1 M1 A1 (4)
(d)	Expected number with no faults $\quad=1200 \times 0.8=960$	
	Expected number with some faults $=1200 \times 0.2=240$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { M1, A1 } \end{array}$
		[13]
(a)	M1 for use of Po(2) may be implied A1 awrt 0.09	
(b)	B1 for $\operatorname{Po}(8)$ seen or used M1 for $1-\mathrm{P}(Y \leq 10)$ oe A1 awrt 0.184	
(c)	$1^{\text {st }}$ M1 for forming a suitable Poisson distribution of the form $\mathrm{e}^{-\lambda}=0.8$ $1^{\text {st }} \mathrm{A} 1$ for use of lambda as $\frac{2 x}{15}$ (this may appear after taking logs) $2^{\text {nd }} \mathrm{M} 1$ for attempt to consider a range of values that will prove 1.7 is correct $\mathbf{O R}$ for use of logs to show lambda $=\ldots$ $2^{\text {nd }}$ A1 correct solution only. Either get 1.7 from using logs or stating values either side	
S.C	for $\mathrm{e}^{-\frac{2}{15} \times 1.7}=0.797 \ldots \approx 0.80 \quad \therefore x=1.7$ to 2 sf allow $2^{\text {nd }}$ M1A0	
(d)	$1^{\text {st }} \mathrm{M} 1$ for one of the following 1200 p or $1200(1-\mathrm{p})$ where $\mathrm{p}=0.8$ or $2 / 15$. $1^{\text {st }} \mathrm{A} 1$ for both expected values being correct or two correct expressions. $2^{\text {nd }}$ M1 for an attempt to find expected profit, must consider with and without faults $2^{\text {nd }} \mathrm{A} 1$ correct answer only.	

Question Number	Scheme	Marks
Q1 (a) (bi)	Randomly select a number between 00 and 499 (001 and 500) select every $500^{\text {th }}$ person Quota Advantage: Representative sample can be achieved (with small sample size) Cheap (costs kept to a minimum) not "quick" Administration relatively easy Disadvantage Not possible to estimate sampling errors (due to lack of randomness) Not a random process Judgment of interviewer can affect choice of sample - bias Non-response not recorded Difficulties of defining controls e.g. social class	B1 B1 (2) B1 B1
(bii)	Systematic Advantage: Simple or easy to use not "quick" or "cheap" or "efficient" It is suitable for large samples (not populations) Disadvantage Only random if the ordered list is (truly) random Requires a list of the population or must assign a number to each member of the pop.	(2) B1 B1 (2) [6]
(a) (b) (i) (ii)	$1^{\text {st }} \mathrm{B} 1$ for idea of using random numbers to select the first from1-500 (o.e.) $2^{\text {nd }} \mathrm{B} 1$ for selecting every $500^{\text {th }}$ (name on the list) If they are clearly trying to carry out stratified sample then score B0B0 Score B1 for any one line $1^{\text {st }}$ B1 for Quota advantage $2^{\text {nd }}$ B1 for Quota disadvantage $3^{\text {rd }}$ B1 for Systematic Advantage $4^{\text {th }}$ B1 for Systematic Disadvantage	

Question Number	Scheme	Marks
Q2 (a)	Limits are $20.1 \pm 1.96 \times 0.5$ $(19.1,21.1)$	M1 B1 Alcso
	98% confidence limits are	
	$20.1 \pm 2.3263 \times \frac{0.5}{\sqrt{10}}$	$\begin{array}{\|l} \text { M1 } \\ \text { B1 } \end{array}$
	$(19.7,20.5)$	A1A1 (4)
(c)	The growers claim is not correct Since 19.5 does not lie in the interval $(19.7,20.5)$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { dB1 } \end{array}$
		$\begin{gathered} (2) \\ {[9]} \end{gathered}$
(a)	M1 for $20.1 \pm z \times 0.5$. Need 20.1 and 0.5 in correct places with no $\sqrt{10}$ B1 for $z=1.96$ (or better) A1 for awrt 19.1 and awrt 21.1 but must have scored both M1 and B1 [Correct answer only scores 3/3]	
(b)	M1 for $20.1 \pm z \times \frac{0.5}{\sqrt{10}}$, need to see 20.1, 0.5 and $\sqrt{10}$ in correct places B1 for $z=2.3263$ (or better) $1^{\text {st }} \mathrm{A} 1$ for awrt 19.7 $2^{\text {nd }}$ A1 for awrt 20.5 [Correct answer only scores M1B0A1A1]	
(c)	$1^{\text {st }} \mathrm{B} 1$ for rejection of the claim. Accept "unlikely" or "not correct" $2^{\text {nd }} \mathrm{dB} 1$ Dependent on scoring $1^{\text {st }} \mathrm{B} 1$ in this part for rejecting grower's claim for an argument that supports this. Allow comment on their 98% CI from (b)	

Question Number	Scheme	Marks
Q4	$X \sim \mathrm{~N}\left(55,3^{2}\right)$ therefore $\bar{X} \sim \mathrm{~N}\left(55, \frac{9}{8}\right)$ $\begin{aligned} \mathrm{P}(\bar{X}>57) & =\mathrm{P}\left(\mathrm{Z}>\frac{57-55}{\sqrt{\frac{9}{8}}}\right)=\mathrm{P}(Z>1.8856 \ldots) \\ & =1-0.9706 \\ & =0.0294 \end{aligned}$ 0.0294~0.0297	B1 B1 M1 M1 A1
ALT	$1^{\text {st }} \mathrm{B} 1$ for $\bar{X} \sim$ normal and $\mu=55$, may be implied but must be \bar{X} $2^{\text {nd }} \mathrm{B} 1$ for $\operatorname{Var}(\bar{X})$ or st. dev of \bar{X} e.g. $\bar{X} \sim \mathrm{~N}\left(55, \frac{9}{8}\right)$ or $\bar{X} \sim \mathrm{~N}\left(55,\left(\frac{3}{\sqrt{8}}\right)^{2}\right)$ for B1B1 Condone use of X if they clearly mean \bar{X} so $X \sim \mathrm{~N}\left(55, \frac{9}{8}\right)$ is OK for B1B1 $1^{\text {st }}$ M1 for an attempt to standardize with 57 and mean of 55 and their st. dev. $\neq 3$ $2^{\text {nd }}$ M1 for $1-$ tables value. Must be trying to find a probability <0.5 A1 for answers in the range 0.0294~0.0297 $\sum_{1}^{8} X_{i} \sim \mathrm{~N}\left(8 \times 55,8 \times 3^{2}\right)$ $1^{\text {st }} \mathrm{B} 1$ for $\sum X \sim$ normal and mean $=8 \times 55$ $2^{\text {nd }}$ B1 for variance $=8 \times 3^{2}$ $1^{\text {st }}$ M1 for attempt to standardise with 57×8, mean of 55×8 and their st dev $\neq 3$	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q6 (a) \& \begin{tabular}{l}
\(\mu_{\mathrm{u}} \sim\) mean length of upper shore limpets, \(\mu_{\mathrm{L}} \sim\) mean length of lower shore limpets
\[
\begin{aligned}
\& \mathrm{H}_{0}: \mu_{\mathrm{u}}=\mu_{\mathrm{L}} \\
\& \mathrm{H}_{\mathrm{l}}: \mu_{\mathrm{u}}<\mu_{\mathrm{L}}
\end{aligned}
\] \\
both
\[
\begin{aligned}
\& \text { s.e. }=\sqrt{\frac{0.42^{2}}{120}+\frac{0.67^{2}}{150}} \\
\&=0.0668 \\
\& z=\frac{5.05-4.97}{0.0668}=(\pm) 1.1975 \\
\& \text { Critical region is } z \geq 1.6449, \text { or probability }=\operatorname{awrt}(0.115 \text { or } 0.116) \quad \text { awrt } \pm \underline{\mathbf{1 . 2 0}} \quad z= \pm 1.6449
\end{aligned}
\] \\
(\(1.1975<1.6449\)) therefore not in critical region / accept \(\mathrm{H}_{0} /\) not significant (or \(\mathrm{P}(\mathrm{Z} \geq 1.1975)=0.1151,0.1151>0.05\) or z not in critical region) \\
There is no evidence that the limpets on the upper shore are shorter than the limpets on the lower shore. \\
Assume the populations or variables are independent Standard deviation of sample \(=\) standard deviation of population [Mention of Central Limit Theorem does NOT score the mark]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
dM1 A1 \\
B1 \\
M1 \\
A1 \\
(8) \\
B1 \\
B1 \\
(2) \\
[10]
\end{tabular} \\
\hline (a)

(b) \& | $1^{\text {st }}$ B1 If μ_{1}, μ_{2} used then it must be clear which refers to upper shore. Accept sensible choice of letters such as u and l. |
| :--- |
| $1^{\text {st }}$ M1 Condone minor slips e.g. $\frac{0.67^{2}}{120}$ or $\frac{0.67}{150}+\frac{0.42^{2}}{120}$ etc i.e. swapped n or one sd and one variance but M0 for $\sqrt{\frac{0.67}{150}+\frac{0.42}{120}}$ |
| $1^{\text {st }}$ A1 can be scored for a fully correct expression. May be implied by awrt 1.20 |
| $2^{\text {nd }} \mathrm{dM} 1$ is dependent upon the $1^{\text {st }} \mathrm{M} 1$ but can ft their se value if this mark is scored. |
| $2^{\text {nd }} \mathrm{A} 1$ for awrt (\pm) 1.20 |
| $3^{\text {rd }} \mathrm{M} 1$ for a correct statement based on their z value and their cv . No cv is M0A0 If using probability they must compare their $p(<0.5)$ with 0.05 (o.e) so can allow $0.884<0.95$ to score this $3^{\text {rd }} \mathrm{M} 1$ mark. |
| May be implied by their contextual statement and M1A0 is possible. |
| $3^{\text {rd }} \mathrm{A} 1$ for a correct comment to accept null hypothesis that mentions length of limpets on the two shores. |
| $1^{\text {st }}$ B1 for one correct statement. Accept "samples are independent" |
| $2^{\text {nd }}$ B1 for both statements | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
Q7 (a)	$\begin{aligned} & \text { Estimate of Mean }=\frac{600.9}{5}=120.18 \\ & \text { Estimate of Variance }=\frac{1}{4}\left\{72216.31-\frac{600.9^{2}}{5}\right\} \text { or } \frac{0.148}{4}=0.037 \\ & \begin{aligned} \mathrm{P}(-0.05<\mu-\hat{\mu}<0.05) & =0.90 \quad \text { or } \mathrm{P}(-0.05<\bar{X}-\mu<0.05)=0.90 \quad[\leq \text { is OK }] \\ \frac{0.05}{\frac{0.2}{\sqrt{n}}} & 1.6449 \\ n & =\frac{1.6449^{2} \times 0.2^{2}}{0.05^{2}} \\ n & =43.29 \ldots \\ n & =44 \end{aligned} \end{aligned}$	M1A1 M1 Alft A1 (5) B1 M1 A1 dM1 A1 A1 (6) [11]
(a) (b)	$1^{\text {st }}$ M1 for an attempt at $\sum x$ (accept 600 to 1 sf) $1^{\text {st }}$ A1 for $\frac{600.9}{5}=$ awrt 120 or awrt 120.2. No working give M1A1 for awrt 120.2 $2^{\text {nd }} \mathrm{M} 1$ for the use of a correct formula including a reasonable attempt at $\sum x^{2}$ (Accept 70000 to 1 sf) or $\sum(x-\bar{x})^{2}=0.15$ (to 2 dp) $2^{\text {nd }}$ A1ft for a correct expression with correct $\sum x^{2}$ but can ft their mean (for expression - no need to check values if it is incorrect) $3^{\text {rd }} \mathrm{A} 1$ for 0.037 Correct answer with no working scores $3 / 3$ for variance B1 for a correct probability statement or "width of $90 \% \mathrm{CI}=0.05 \times 2=0.1$ " $1^{\text {st }} \mathrm{M} 1 \quad$ for $\frac{0.05}{\frac{0.2}{\sqrt{n}}}=z$ value $\underline{\text { or }} 2 \times \frac{0.2}{\sqrt{n}} \times z=0.1$ Condone 0.5 instead of 0.05 or missing 2 or 0.05 for 0.1 for M1 $1^{\text {st }} \mathrm{A} 1$ for a correct equation including 1.6449 $2^{\text {nd }}$ dM1 Dependent upon $1^{\text {st }}$ M1 for rearranging to get $n=\ldots$ Must see "squaring" $2^{\text {nd }} \mathrm{A} 1$ for $n=$ awrt 43.3 $3^{\text {rd }} \mathrm{A} 1$ for rounding up to get $n=44$ Using e.g.1.645 instead of 1.6449 can score all the marks except the $1^{\text {st }} \mathrm{A} 1$	$1^{\text {st }}$ B1 may be implied by $1^{\text {st }} \mathrm{A} 1$ scored or correct equation.

Question Number	Scheme	Marks
Q8 (a)	$\begin{aligned} \mathrm{E}(4 X-3 Y) & =4 \mathrm{E}(X)-3 \mathrm{E}(Y) \\ & =4 \times 30-3 \times 20 \\ & =60 \end{aligned}$	M1 A1 (2)
(b)	$\begin{array}{rlr} \operatorname{Var}(4 X-3 Y) & =16 \operatorname{Var}(X)+9 \operatorname{Var}(Y) & 16 \text { or } 9 ; \text { adding } \\ & =16 \times 9+9 \times 4 \\ & =180 \end{array}$	M1; M1 A1 (3)
(c)	$\begin{array}{lr} \mathrm{E}(B)=80 & \\ \operatorname{Var}(B)=16 & \\ \mathrm{E}(B-A)=20 & \mathrm{E}(B)-\mathrm{E}(A) \\ \operatorname{Var}(B-A)=196 & \mathrm{ft} \text { on } 180 \text { and } 16 \end{array}$	B1 B1 M1 Alft
	$\begin{aligned} \mathrm{P}(B-A>0) & =\mathrm{P}\left(Z>\frac{-20}{\sqrt{196}}\right)=[\mathrm{P}(Z>-1.428 \ldots)] & \text { stand. using their mean and var } \\ & =0.923 \ldots & \text { awrt } 0.923-0.924 \end{aligned}$	dM1 A1 (6) $[11]$
(a)	M1 for correct use of $\mathrm{E}(a X+b Y)$ formula	
(b)	$\begin{aligned} & 1^{\text {st }} \text { M1 for } 16 \operatorname{Var}(X) \text { or } 9 \operatorname{Var}(Y) \\ & 2^{\text {nd }} \text { M1 for adding variances } \end{aligned}$	
(c)	Key points are the 16, 9 and + . Allow slip e.g using $\operatorname{Var}(X)=4$ etc to score Ms $1^{\text {st }} \mathrm{M} 1$ for attempting $B-A$ and $\mathrm{E}(B-A)$ or $A-B$ and $\mathrm{E}(A-B)$ This mark may be implied by an attempt at a correct probability e.g. $\mathrm{P}\left(Z>\frac{0-(80-60)}{\sqrt{180+16}}\right)$. To be implied we must see the " 0 "	
	$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for $\operatorname{Var}(B-A)$ can ft their $\operatorname{Var}(A)=180$ and their $\operatorname{Var}(B)=16$	
	$2^{\text {nd }}$ dM1 Dependent upon the $1^{\text {st }}$ M1 in part (c). for attempting a correct probability i.e. $\mathrm{P}(B-A>0)$ or $\mathrm{P}(A-B<0)$ and standardising with their mean and variance. They must standardise properly with the 0 to score this mark $2^{\text {nd }}$ A1 for awrt $0.923 \sim 0.924$	

J une 2009

6686 Statistics S4

Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{array}{rl} \mathrm{H}_{0}: \mu=5 ; \mathrm{H}_{1}: \mu<5 & \text { both } \\ \text { CR: } t_{9}(0.01)>2.821 & \\ \bar{x}=4.91 & \mathrm{~s}=\text { awrt } 0.115 \\ s^{2} & =\frac{1}{9}\left(241.2-\frac{49.1^{2}}{10}\right)=0.0132222 \\ t & =\frac{\|4.91-5\|}{\frac{\sqrt{0.013222}}{\sqrt{10}}}= \pm 2.475 \end{array}$ Since 2.475 is not in the critical region there is insufficient evidence to reject H_{0} and conclude that the mean diameter of the bolts is not less than (not equal to) 5 mm .	B1 B1 B1 M1 A1 M1 A1 Alft [8]

Question Number	Scheme	Marks
3 (a)	Size is the probability of H_{0} being rejected when it is in fact true. or P (reject $\mathrm{H}_{0} / \mathrm{H}_{0}$ is true) oe	B1
	The power of the test is the probability of rejecting H_{0} when H_{1} is true. or $\mathrm{P}\left(\right.$ rejecting $\mathrm{H}_{0} / \mathrm{H}_{1}$ is true) / $\mathrm{P}\left(\right.$ rejecting $\mathrm{H}_{0} / \mathrm{H}_{0}$ is false) oe	B1 (1)
	$X \sim \mathrm{~B}(12,0.5)$	B1
	$\mathrm{P}(X \leq 2)=0.0193$	M1
	$\mathrm{P}(X \geq 10)=0.0193$	
	\therefore critical region is $\{X \leq 2 \cup X \geq 10\}$	AlA1 (4)
(d)(i)	$\begin{aligned} \mathrm{P}(\text { Type II error }) & =\mathrm{P}(3 \leq X \leq 9 \mid p=0.4) \\ & =\mathrm{P}(X \leq 9)-\mathrm{P}(X \leq 2) \\ & =0.9972-0.0834 \\ & =0.9138 \end{aligned}$	M1 M1dep A1
(e)	$\begin{aligned} \text { Power } & =1-0.9138 \\ & =0.0862 \end{aligned}$	B1 ft (4)
	Increase the sample size Increase the significance level/larger critical region	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
	Intere	(2)
Notes	(d) (i) first M1 for either correct area or follow through from their critical region 2nd M1 dependent on them having the first M1. for finding their area correctly A1 cao (ii) B 1 follow through from their (i)	

Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b) (c)	$\mathrm{AD}, \mathrm{AE}, \mathrm{DB} ; \mathrm{DC}, \mathrm{CF}$ Weight 595 (km) Notes: (a) 1M1: Using Prim - first 2 arcs probably but condone starting from another vertex. 1A1: first three arcs correct 2A1: all correct. (b) $1 \mathrm{~B} 1: \mathrm{CAO}$ (c) 1B1: CAO condone lack of km . Apply the misread rule, if not listing arcs or not starting at A. So for M1 (only) Accept numbers across the top (condoning absence of 6) Accept full vertex listing Accept full arc listing starting from vertex other than A [AD AE DB DC CF] $\{145236\} \quad$ ADEBCF BD AD AE CD CF $\quad\{315246\} \quad$ BDAECF CD AD AE BD CF $\{351246\} \quad$ CDAEBF DA AE DB CD CF $\{245136\} \quad$ DAEBCF EA AD DB DC CF $\{245316\} \quad$ EADBCF FC CD AD AE BD $\{462351\} \quad$ FCDAEB	M1 A1; A1 (3) B1 (1) B1 (1) [5]

Question Number	Scheme	Marks
(a) (b) (c)	$\mathrm{H}-2=\mathrm{M}-5=\mathrm{R}-4$ change status to give $\mathrm{C}=3 \quad \text { (E unmatched) } \mathrm{H}=2 \quad \mathrm{M}=5 \quad \mathrm{R}=4 \quad \mathrm{~S}=1$ e.g. C is the only person who can do 3 and the only person who can do 6 e.g. $\mathrm{E}-5=\mathrm{M}-2=\mathrm{H}-1=\mathrm{S}-3=\mathrm{C}-6$ change status to give $\mathrm{C}=6 \quad \mathrm{E}=5 \quad \mathrm{H}=1 \quad \mathrm{M}=2 \quad \mathrm{R}=4 \quad \mathrm{~S}=3$ Notes: (a) 1M1: Path from H to 4 1A1: correct path and change status 2A1: CAO must follow from correct path. (b) 1B1: CAO or e.g reference to E 5 M 2 H 1 S (c) 1 M 1 : Path from E to 6 1A1: CAO do not penalise lack of change status a second time. 2A1: CAO must follow from a correct path	M1 A1 A1 (3) B1 (1) M1 A1 A1 (3) $[7]$

Question Number	Scheme	Marks
Q5 (a)	$\begin{aligned} & \mathrm{CD}+\mathrm{EG}=45+38=83 \\ & \mathrm{CE}+\mathrm{DG}=39+43=82 \leftarrow \\ & \mathrm{CG}+\mathrm{DE}=65+35=100 \\ & \text { Repeat } \mathrm{CE} \text { and } \mathrm{DG} \\ & \text { Length } 625+82=707(\mathrm{~m}) \end{aligned}$ DE (or 35) is the smallest So finish at C. New route $625+35=660(\mathrm{~m})$ Notes: (a) 1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: two rows correct 3A1: three rows correct 4A1ft: ft their least, but must be the correct shortest route arcs on network. (condone DG) $5 \mathrm{~A} 1 \mathrm{ft}: 625+$ their least $=$ a number. Condone lack of m (b) 1 M 1 : Identifies their shortest from a choice of at least 2 rows. 1 A 1 ft : ft from their least or indicates C . $2 \mathrm{~A} 1 \mathrm{ft}=1 \mathrm{Bft}$: correct for their least. (Indept of M mark)	M1 1A1 2A1 3A1 4A1ft 5A1ft (6) M1 Alft A1ft=1B1 (3) [9]

Question Number	Scheme	Marks
(a) (b)	Route: A E H I Shortest distance from A to G is 28 km Notes: (a) 1M1: Small replacing big in the working values at C or F or G or I 1A1: Everything correct in boxes at A, B, D and F 2 A 1 ft : ft boxes at E and C handled correctly but penalise order of labelling only once 3 A 1 ft : ft boxes at G and H handled correctly but penalise order of labelling only once 4A1ft: ft boxes at I handled correctly but penalise order of labelling only once 5A1: route cao A E H I (b) 1 B 1 ft : ft their final label at G condone lack of km	M1 1A1 2A1ft 3A1ft 4A1ft 5A1 B1ft

Question Number	Scheme	Marks
Q8 ${ }^{(a)}$		M1 A1 M1 A1 (4)
	A C J L Total float for $\mathrm{M}=56(\mathrm{ft})-46-9=1$ Total float for $\mathrm{H}=47-12-21=14$	B1 M1 A1ft B1 (3)
		M1 A1 M1,A1
(e)	$\begin{aligned} & \text { 1pm day 16: C } \\ & \text { 1pm day 31: C F G H } \end{aligned}$	B1ft B2ft, 1ft, 0 (3) [15]

6690 Decision Mathematics D2

Mark Scheme

Question Number	Scheme	Marks
Q4 (a) (b)	Value of cut $\mathrm{C}_{1}=34 ; \quad$ Value of cut $\mathrm{C}_{2}=45$ SBF GT or S B F E T - value 2 Maximum flow $=28$ Notes: (a) 1B1: cao 2B1: cao (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value $1 \mathrm{~A} 1=\mathrm{B} 1: \text { cao }$	(2) M1 A1 A1=B1 (3) [5]
Q5 (a) (b)	$\begin{align*} & x=0, y=0, z=2 \tag{2}\\ & P-2 x-4 y+\frac{5}{4} r=10 \end{align*}$ Notes: (a) 1B1: Any 2 out of 3 values correct 2B1: All 3 values correct. (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. 1A1: cao - condone terms of zero coefficient	B2,1,0 M1 A1 (2) [4]

Question Number	Scheme
Q8	E.g. Add 6 to make all elements positive $\left[\begin{array}{ccc}4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10\end{array}\right]$

Let Laura play 1, 2 and 3 with probabilities p_{1}, p_{2} and p_{3} respectively
Let $\mathrm{V}=$ value of game +6
e.g.

Maximise $\mathrm{P}=\mathrm{V}$
Subject to:
$V-4 p_{1}-13 p_{2}-7 p_{3} \leq 0$
$V-14 p_{1}-10 p_{2}-p_{3} \leq 0$
$V-5 p_{1}-3 p_{2}-10 p_{3} \leq 0$

$$
\begin{align*}
p_{1}+p_{2}+p_{3} & \leq 1 \\
p_{1}, p_{2}, p_{3} & \geq 0 \tag{7}
\end{align*}
$$

Notes:

1B1: Making all elements positive
2B1: Defining variables
3B1: Objective, cao word and function
1M1: At least one constraint in terms of their variables, must be going down columns. Accept $=$ here .
1A1ft: ft their table. One constraint in V correct.
2A1ft: ft their table. Two constraints in V correct.
3A1: CAO all correct .

Alt using x_{i} method

Now additionally need: let $x_{i}=\frac{p_{i}}{v}$ for 2B1 $\operatorname{minimise}(P)=x_{1}+x_{2}+x_{3}=\frac{1}{v}$
subject to:

$$
\begin{aligned}
4 x_{1}+13 x_{2}+7 x_{3} & \geq 1 \\
14 x_{1}+10 x_{2}+x_{3} & \geq 1 \\
5 x_{1}+3 x_{2}+10 x_{3} & \geq 1 \\
x_{i} & \geq 0
\end{aligned}
$$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA021531 Summer 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

